To do ...

- TAM 210 final
 - CBTF 1hr 50 mins
 - \bullet Thurs Sunday // Nov 9^{th} Nov 12^{th}
- TAM 211 final
 - CBTF
 - Dec 14th Dec 20th (tentative)
- HW 16 PL due **Tues**
- HW 17 ME due Thurs

Thank You !!

2. Overall course quality

3. Lecture pace

5. Lectures help me better understand the course material

6. I make use of posted lecture notes

8. I go to office hours for help

14. I find the online homework too difficult

18. The homework prepares me for the quizzes

24. The TA/CA checks to see that our group understands the worksheet rather than looking only at whether we have completed the activity

 $A_y - 15k - V(x) = 0$: $V(x) = A_y - 15k$

$$2N=0$$

 $M(x) - xAy + (x-2)|5|k = 0$ Linear
 $M(x) = X(Ay-|5k) + 30k$ W/neg. slope

Region III:

$$\overline{Z} = 0$$
 $Y(x) = Ay - 15k$

ZM=0

$$U(x) - 20K - xAy + (x-2)15k = 0$$

$$M(x) = x(Ay-15K)+50K$$

Region III:

$$A_{y}$$
 - 15k - 10k (x-4) - V(x) =0

ZM=0

$$M(x) - J_{0k} - xA_{y} + (x-2)/5k + (x-4)/10k) \cdot (\frac{x-4}{2}) = 0$$

$$M(x) = z_{0k} + 3_{0k} + x_{4} - x_{15k} - (x_{4})^{2} 5_{k}$$

$$M(x) = 50 k + x (A_y - 15k) - (x - 4)^2 5k$$

NOW the Shear and moment diagrams!

Relations Among Load, Shear and Bending Moments

Consiner the beam elevent:

SheAR force :

$$\Delta v = \omega(x) \Delta x$$

ZM0:

$$-M(x)+M(x)+\Delta M-V\Delta x$$

$$-\beta\Delta x \left(\omega(x)\Delta x\right) = 0$$

in the limit that Ax>0

$$\frac{dv}{dx} = \omega(x)$$

$$\Delta V = V_2 - V_1 = \int \omega(x) dx$$

$$\frac{dM}{dx} = V(x)$$

$$VW = M^2 - M' = \int I(x) dx$$

Wherever there is an external concentrated force, or a concentrated moment, there will be a change (jump) in shear or moment respectively.

Shuar: 2fy: V+F-V-AV=0: => [AV=F]

(b)

ZM: MT AM-M - No - DXV =0

 $\Delta M = M_0 + \Delta XV :$

NX ->0

	•	

M= N°