To do ...

- Go to discussion 8% of your grade!
- Check your grades on compass $(-- \neq 0)$
- Sign up for Quiz 4 (CBTF next week)
- HW 13 ME due Thurs
- WA 2 due Fri
 - Read instructions!!

Frames and machines

Frames and machines are two common types of structures that have at least one multi-force member (Recall that trusses have nothing but two-force members).

Frames are generally stationary and used to support various external loads.

Frames and machines

Frames and machines are two common types of structures that have at least one multi-force member (Recall that trusses have nothing but two-force members).

Q: 2-force members?

property connected

Members!

- Awesome!

Machines contain moving parts and are designed to alter the effect of forces

Frames and machines

The members can be <u>truss elements</u>, <u>beams</u>, <u>pulleys</u>, <u>cables</u>, and other components. The general solution method is the same:

- DRAW FBD of Entire
FRAME OF MAChine
Lis then of EACh
Subsystem (Members)

- REpresent All interactions
- identify two-force members
- Do NOT include internal forces on FBD
- Count unknowns, Check if possible to Solve
 - Choose subsystem that leads to the most Direct Solution
 - Efficiently impose equilibrium equations And

Draw the FBD of the members of the backhoe. The bucket and its contents have a weight W.

subsys in EM

Sum moments about C:

$$\geq M_c$$
: 2 (400) + 800 - 3 $\left(\frac{1}{\sqrt{10}}f_{\rm B}\right)$ - $1\left(\frac{3}{\sqrt{10}}f_{\rm B}\right)$ = 0

Sum forces in x And y:

$$Zf_{x}$$
: $C_{x} - \frac{3}{10}f_{B} = 0$.: $C_{x} = \frac{3}{10}f_{B} = \frac{3}{10}N$

Lectures Page 7

 Zf_{y} : $C_{y} + \sqrt{10}f_{B} - 400 = 0$: $C_{y} = 400 - \frac{1}{100}f_{B} = 133N$