To do ...

- Happy Mid-Autumn festival
- HW 11 ME due **Thurs**
- CATME mid-course survey due **Fri**
- HW 12 PL due **Tues**

Chapter 6: Structural Analysis

Main goals and learning objectives

- Determine the forces in members of a truss using the method of joints
- Determine zero-force members
- Determine the forces in members of a truss using the method of sections

Simple trusses

Trusses are commonly used to support roofs.

A more challenging question is, that for a given load, how can we design the trusses' geometry to minimize cost?

Scaffolding

An understanding of statics is critical for predicting and analyzing possible modes of failure.

Buckling of slender members in compression is always a consideration in structural analysis.

Simple trusses

Truss:

- Structure composed of slender members joined together at end points
- Transmit loads to supports

Assumption of trusses

- Loading applied at joints, with negligible weight (If weight included, vertical and split at joints)
- Members joined by smooth pins

Result: all truss members are twoforce members, and therefore the force acting at the end of each member will be directed along the axis of the member

-behaves As A
single object
- simplest truss
is one friange

Roof trusses

Load on roof transmitted to purlins, and from purlins to roof trusses at joints.

Bridge trusses

Load on deck transmitted to stringers, and from stringers to floor beams, and from floor beams to bridge trusses at joints.

Joints And Members

7 'pints

11 members

1. Forces Act At joints 2. in single plant

8 'joints

13 members

Relation between members and points

if
$$J = 7$$

$$M = 2(8) - 3 = 13$$
 numbers

Method of joints

- Truss is in equilibrium ONLY if ALL individual pieces are in equilibrium
- Truss members are two-force members: equilibrium satisfied by equal, opposite, collinear forces

tension: Hongate / Pull

Compression: Push

Procedure for analysis:

DETERMINE Force in nember

Ly pin exert equal And opposite force on A Member.

- 1. DRAW FBD for HUSS And EACH joint
- 2. Start w/joint w/ At least 1 known And 1-2 unknown
 - 3. USE EOE

number of unknowns that can be solved for =M is u- numbers

$$M+3 = 2J$$

: s ut3 > 25 then truss not a rigid structure

if u+3 <25 then truss statically indeterminate

4. Assume unknown forces are in tension LD forces pall on the pin

Lo positive forces -o tension regative -> compress.

Find the forces in each member of the truss. Determine if members are in tension or compression.

- 1. Draw FBD of truss
- 2. label external And reaction forces
- 3. DRAW FBD of joints
- 4. USC FOF

O: How many members/joints?

* = M of truss and support Exns first!

 Zf_{x} : 600 + $C_{x} = 0$

Cx = -600 N

$$A_y = \frac{-3600}{6} = \frac{-600 \text{ N}}{6}$$

now analyze Each joint! (b/c truss is in =M!)

FBD of Joint A

$$5f_{x}$$
: $f_{An} + \frac{3}{5}f_{AB} = 0$

$$2f_{y}$$
: $\frac{4}{5}f_{AB} + A_{y} = 0$

$$\frac{1}{4} - \frac{5}{4}A_{y} = -\frac{750N}{6}$$

$$F_{AD} = \frac{-3}{5}F_{AB} = \frac{450N}{1}$$

FBD of Joint D

$$5F_{x}$$
: $600 - F_{A0} - \frac{3}{5}F_{60} = 0$

$$\Sigma f_{y}$$
: $f_{c0} + \frac{4}{5} f_{60} = 0$

$$F_{60} = \frac{5}{3}(600-450) = 250 \text{ N} (7)$$

$$f_{CD} = \frac{-4}{5} f_{BD} = -200 \text{ N}$$
 (c)

FED of joint C

Fen of joint C

$$\overline{Z}f_{y}: \ F_{cD} - C_{y} = 0$$

$$\overline{F}_{gC} = (C_{x} = 600 \text{ N}) (T)$$

$$\overline{F}_{cD} = C_{y} = 200 \text{ N} (\text{Check})$$

So what does this MEAN ...

In \equiv M, the truss is A rigid structure, Composed of rigid members, connected by smooth pins. for A given configuration And External landing, Members experience tension or compression.

