To do ...

• Quiz 2 this week (ends on today!)

- WA 1 due TODAY @ 11:59 pm
- HW 8 due **Tues**
- HW 9 due **Thurs**

• In class quiz 3 MONDAY, Oct 2

- Thank you for your feedback!!
- Happy Autumn Equinox!!

What is the equivalent system?

Replace the force system acting on the post by a resultant force and resultant moment about point A, and specify where its line of action intersects the post AB measured from point A.

Reduction of a simple distributed load

Reduction of a simple distributed load

In structural analysis, we often are presented with a **distributed load** W(x) (force/unit length) and we need to find the equivalent loading F.

Example of such forces are winds, fluids, or the weight of items on the body's surface.

Distributed Loading

A common case of distributed loading in a uniform load along one axis of a flat rectangular body.

In such cases, *w* is a function of *x* and has <u>units</u> of

Consider an element of length dx. The force magnitude dF acting on it is given as

The net force on the beam is given by

Location of the Resultant Force

The force *dF* will produce a moment about *O* of

The total moment about point O is

Assuming that \mathbf{F}_R acts at \underline{x} , it will produce the moment about point O as

Hence,

Triangular loading

Triangular loading

Rectangular loading $w(x) = w_0$ L

Determine the magnitude and location of the equivalent resultant of this load.

