To do ...

- Quiz 2 this week (ends on today!)
- WA 1 due TODAY @ 11:59 pm
- HW 8 due Tues
- HW 9 due Thurs
- In class quiz 3 MONDAY, Oct 2
- Thank you for your feedback!!
- Happy Autumn Equinox!!

HOW DOES

Or like

YOUR TOILET PAPER HANG?

Put it on the holder yourself if it's such a big deal, jeez

S. WHEELER. WRAPPING OR TOILET PAPER ROLL.

No. 459,516.

Patented Sept. 15, 1891.

(No Model.)

E. MORGAN TOILET PAPER FIXTURE.

No. 469,301.

Patented Feb. 23, 1892.

What is the equivalent system?

X= MR FR

SAME External Effects

Replace the force system acting on the post by a resultant force and resultant moment about point A, and specify where its line of action intersects the post AB measured from point A.

$$\Sigma f_{x}$$
: $\frac{4}{5}$ 250 - 300 - 500 $\cos(30)$ = -533 N

$$Z = \frac{3}{5} = 100 \text{ N}$$

$$|\vec{f}_{e}| = \sqrt{f_{x}^{2} + f_{y}^{2}} = 542N$$
 $\theta = tAn^{-1} \left(\frac{f_{y}}{f_{x}}\right) = 10.6^{\circ}$

$$\vec{M}_{R} = \sum M = (1)(300) + (2)(500 \cos(30)) - (0.2)(500 \sin(30))$$

$$- (0.5)(\frac{3}{5}250) - (3)(\frac{4}{5}250) = x \vec{F}_{Rx}$$

$$\bar{X} = 0.827 \, \text{M}$$

only x - component CREATES

mohent.

Reduction of a simple distributed load

VS. Force Applied At single point.

Reduction of a simple distributed load

In structural analysis, we often are presented with a **distributed load** w(x) (force/unit length) and we need to find the equivalent loading F.

Example of such forces are winds, fluids, or the weight of items on the body's surface.

$$\omega(x) = p(x) \cdot b = \frac{N}{N^2} \cdot m = \frac{N}{M} = \frac{\text{force}}{\text{length}}$$

$$\omega(x) = \frac{dF}{dx}$$

Replace coplanar parallel force system with a Single equivalent resultant force

 $M_i = \chi dF(x)$ $M_i = \sum M_i = \sum \chi dF(x)$

Where is the resultant force located?

γL

line of action PASSES through CENTroid!

$$N_{F} = X I_{F}$$

$$\int_{0}^{L} x \omega(x) dx = \overline{x} \int_{0}^{L} \omega(x) dx$$

$$\overline{x} = \frac{\int_{0}^{L} x \omega(x) dx}{\int_{0}^{L} \omega(x) dx} = \frac{\text{geometric}}{\int_{0}^{L} \omega(x) dx}$$
Center,

$$\overrightarrow{M}_{R} = \int_{-\infty}^{L} x \omega(x) dx = \int_{-\infty}^{L} \frac{\omega_{0}}{x^{2}} x^{2} dx = \frac{\omega_{0}}{L} \int_{0}^{L} x^{3} dx = \frac{\omega_{0}}{L} \left[\frac{x^{3}}{3} \right]_{0}^{L}$$

$$\vec{N}_{R} = \frac{1}{3}\omega_{0}\vec{l}^{2}$$

$$\vec{N}_{R} = \vec{\chi} \vec{F}_{R} = \frac{1}{3}\omega_{0}\vec{l}^{2} = \frac{2}{3}L_{0}$$

Lectures Page 9

* magnitude

the line of Action passes through (x, y),

to summarite:

* Magnitude is tigual to the Area under the curve w(x)

Lo triangle is Te=Jwxxdx= 2bh

X the Force Acts At the Geometric

CENTER

Lo for A triAngle...

$$(\overline{x},\overline{y})=(\frac{1}{3}b,\frac{1}{3}h)$$

$$(\bar{x}_1\bar{y}) = \left(\frac{2}{3}b, \frac{1}{3}h\right)$$

Q: What About this one?

$$(\bar{\chi},\bar{\psi}) = ?$$

2. find
$$MR = \int X dF = \int X \omega(x) dx$$

3. find $\overline{X} = MR / FR$

$$\overrightarrow{M}_{R} = \int_{0}^{L} x dF = \int_{0}^{L} w_{0} x dx = w_{0} \left[\frac{x^{2}}{z} \right]_{0}^{L} = \frac{1}{z} w_{0} \left[\frac{x^{2}}{z} \right]_{0}^{L}$$

$$\bar{\chi} = \frac{M_R}{\bar{f}_R} = \frac{1}{2} U_0 L^2 = \frac{L}{2}$$

Geometric Center-(x,y)

FR - (AREA of Rectangle - W.L)