To do ...

- Quiz 2 this week (ends Fri)
- HW 7 due Thurs
- WA 1 due Fri
- HW 8 due Tues

Chapter 4: Force System Resultants Main goals and learning objectives

- Discuss the concept of the moment of a force and show how to calculate it in two and three dimensions
- Provide a method for finding the moment of a force about a specified axis
- Define the moment of a couple
- Method to simplify a force and couple system to an equivalent system
- Indicate how to reduce a simple distributed loading to a resultant force having a specified location

Couples ...

$$\widetilde{M}_{0} = (.15 +) \hat{1} - (.5 +) \hat{1} + (.15 +) \hat{1} - (.8 +) \hat{1}$$

$$\widetilde{M}_{0} = (.3 \hat{1} - .2 \hat{1})_{M} \cdot F$$

$$\vec{r}_{AB} = \vec{r}_{OB} - \vec{r}_{OA} = [.2, .3, 0] M$$

$$\overrightarrow{M} = \overrightarrow{r}_{AB} \times \overrightarrow{F}_{B} = \begin{bmatrix} \hat{1} & \hat{3} & \hat{k} \\ 2 & .3 & 0 \end{bmatrix} = \begin{bmatrix} \hat{1} & \hat{3} & \hat{k} \\ 2 & .3 & 0 \end{bmatrix} = \begin{bmatrix} \hat{1} & \hat{3} & \hat{k} \\ 0 & 0 & \hat{4} \end{bmatrix}$$

$$M = (.3F)^{1} - (.2F)^{2} = [.3^{1} - .2^{2}]^{1} M F$$

*SAME AS previous Slide!

X try using TBA?

$$\vec{R}_{BA} = \vec{r}_{OA} - \vec{r}_{OB} = \begin{bmatrix} -.2, -.3, 0 \end{bmatrix}$$

$$\vec{R}_{BA} = \vec{r}_{OA} - \vec{r}_{OB} = \begin{bmatrix} -.2, -.3, 0 \end{bmatrix}$$

$$\vec{R}_{A} = \vec{r}_{A} \times \vec{r}_{A} = \begin{bmatrix} 1 & 3 & 4 \\ -.2 & -.3 & 0 \\ 0 & -f \end{bmatrix}$$

$$\vec{M} = (-.3)(-f)\hat{c} - (-2)(-f)\hat{j}$$

$$\vec{M} = [.3\hat{c} - .2\hat{j}]_{M}.f$$

X SAME ANSWER
YET AGAIN!

Equipollent (or equivalent) force systems

A force **system** is a collection of **forces** and **couples** applied to a body.

Two force systems are said to be **equipollent** (or equivalent) if they have the **same resultant force** AND the **same resultant moment** with respect to any point \overline{P} .

Simplify this system to A

Single Resultant force Fr and

Single Resultant Couple Moment Mir

couple consider the rigid

Fo = 2fx, 2fy, 2fz

 $\vec{N}_{R} = \vec{\Sigma} \vec{N}_{C} + \vec{\Sigma} \vec{N}_{O}$ $\vec{\Sigma}(\vec{r} \times \vec{r})$ (Couples)
(noment about 0)

The Fre

What is the equivalent system?

Sum forces.

note that

For is ⊥ to MR

sum moments

Replace the force and couple system acting on the member by an equivalent force and couple moment acting at point O.

- DRAW FBD
- Sum forces
- find And Sum moments.

The Resultant Moment

Resultant force

$$\overline{2}$$
 F_x : $\frac{3}{5}$ 500 -200 $+200$ = 300 N

$$\vec{N}_{g} = (2.5)(\frac{4}{5}500)$$

$$-(1.25)(750)$$

$$-1(\frac{2}{5}500)$$

$$+(1)(260) = -37.5 \text{ N.M.}$$

- Equiv. System

