- Quiz 1 - last day!
- Quiz 2 - next week - sign up now!
- Tues - Fri (9/19-9/22)
- HW 6 due Tues
- HW 7 due Thurs
- Written Assignment due Fri (9/22)
- Separate white or engineering paper
- Upload a SINGLE PDF file

Recap

- Moment of a force
- Scalar representation

- Vector representation

Moment of a force - vector formulation

The moment of a force \mathbf{F} about point \mathbf{O}, or actually about the moment axis passing through O and perpendicular to the plane containing \mathbf{O} and \mathbf{F}, can be expressed using the cross (vector) product, namely:

Example - Vector Formulation

Given: The angle $\theta=30^{\circ}$ and $x=10 \mathrm{~m}$.
Find: The moment by \mathbf{P} about point O .

Determine the moment produced by the force \mathbf{F} about point \mathbf{O}.

Determine the moment produced by the force \mathbf{F} about point \mathbf{O}.

Moment of a force about a specified axis

A force is applied to the tool as shown. Find the magnitude of the moment of this force about the x axis of the value.

Moment of a couple

A couple is defined as two parallel forces that have the same magnitude, but opposite directions, and are separated by a perpendicular distance d.

Since the resultant force is zero, the only effect of a couple is to produce an actual rotation, or if no movement is possible, there is a tendency of rotation in a specified

The moment produced by a couple is called couple moment.

Let's determine the sum of the moments of both couple forces about any arbitrary point:

A torque or moment of $12 \mathrm{~N} \cdot \mathrm{~m}$ is required to rotate the wheel. Why does one of the two grips of the wheel above require less force to rotate the wheel?

