- Quiz 1 sign up now!
- Tues - Fri of next week (Sept 12 - 15)
- "Practice" quiz available
- HW3 due Thurs
- HW4 PL due Tues
- Quiz 2 (Sept 19 - 22)
- Written assignment coming soon

Recap

- A force can be treated as a vector since forces obey all the rules that vectors do
- Vector representations
- Rectangular components
- Cartesian components
- Unit vector
- Directional cosines
- Position vectors

Position vectors

A position vector \boldsymbol{r} is defined as a fixed vector which locates a point in space relative to another point. For example,

$$
\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}
$$

expresses the position of point $P(x, y, z)$ with respect to the origin O.

The position vector \boldsymbol{r} of point \boldsymbol{B} with respect to point \boldsymbol{A} is obtained from

Hence,

Thus, the $(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$ components of the positon vector \boldsymbol{r} may be formed by taking the coordinates of the tail (point A) and subtracting them from the corresponding coordinates of the head (point B).

Force vector directed along a line

The man pulls on the cord with a force of 70 lb . Represent the force F as a Cartesian vector.

Why do we care?

Figure 15.

Force vector directed along a line

Don't look up!

Dot (or scalar) product

The dot product of vectors \mathbf{A} and \mathbf{B} is defined as such

$$
\boldsymbol{A} \cdot \boldsymbol{B}=
$$

Cartesian vector formulation:
$\boldsymbol{A} \cdot \boldsymbol{B}=$

Note that:

Cross (or vector) product

The cross product of vectors \mathbf{A} and \mathbf{B} yields the vector \mathbf{C}, which is written

$$
\boldsymbol{C}=\boldsymbol{A} \times \boldsymbol{B}
$$

The magnitude of vector \mathbf{C} is given by:

The vector \mathbf{C} is perpendicular to the plane containing \mathbf{A} and \mathbf{B} (specified by the right-hand rule). Hence,

$$
C=
$$

Cross (or vector) product

The right-hand rule is a useful tool for determining the direction of the vector resulting from a cross product. Note that a vector crossed into itself is zero, e.g., $i \times i=0$

Considering the cross product in Cartesian coordinates

$$
\boldsymbol{A} \times \boldsymbol{B}=\left(A_{x} \boldsymbol{i}+A_{y} \boldsymbol{j}+A_{z} \boldsymbol{k}\right) \times\left(B_{x} \boldsymbol{i}+B_{y} \boldsymbol{j}+B_{z} \boldsymbol{k}\right)
$$

Cross (or vector) product

Also, the cross product can be written as a determinant.

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

Each component can be determined using 2×2 determinants.

Given: The force acting on the hook at point A.

Find: The angle between the force vector and the line AO , and the magnitude of the projection of the force along the line AO.

Determine the projected component of the force vector $F_{A C}$ along the axis of strut AO. Express your result as a Cartesian vector

Chapter 3: Equilibrium of a particle Main goals and learning objectives

- Introduce the concept of a free-body diagram for an object modelled as a particle
- Solve particle equilibrium problems using the equations of equilibrium

Applications

For a spool of given weight, how would you find the forces in cables AB and AC ? If designing a spreader bar (BC) like this one, you need to know the forces to make sure the rigging (A) doesn't fail.

Equilibrium of a particle

According to Newton's first law of motion , a particle will be in equilibrium (that is, it will remain at rest or continue to move with constant velocity) if and only if

$$
\sum \boldsymbol{F}=\mathbf{0}
$$

where $\sum \boldsymbol{F}=\mathbf{0}$ is the resultant force vector of all forces acting on a particle.
In three dimensions, equilibrium requires:

Free body diagram

Equilibrium of a particle (cont.)

Contact force in smooth surface:

