To do...

- Register i>clicker
- MATLAB office hour today
 - 9 5 pm, MEL 1001
- HW 0 due **TODAY**
- HW 1 due SUN
- No class/discussion MON
- HW 2 due TUES
- Grainger office hours start **TUES**

"A fool sees not the same tree that a wise man sees" William Blake (1757 - 1827)

Recap

- What is statics?
- Pay attention to units!
- Solve problem symbolically
- Equations must be dimensionally homogenous
- 3 significant figures
- 1% accuracy rule (PL)

Chapter 2: Force vectors Main goals and learning objectives

Define scalars, vectors and vector operations and use them to analyze forces acting on objects

- Add forces and resolve them into components
- Express force and position in Cartesian vector form
- Determine a vector's magnitude and direction
- Introduce the dot product and use it to find the angle between two vectors or the projection of one vector onto another

	Scalar	Vector
Examples	Mass, Volume, Time	Force, Velocity
Characteristics	It has a magnitude	It has a magnitude and direction
Special notation used in TAM 210/211	None	Bold font or vector symbol \rightarrow \bigstar
Multiplication or division $\vec{B} = \alpha \vec{A}$ Similar Assume vector \vec{A}	R to F=Ma	茂=dA ロ= -1

Vector addition

All vector quantities obey the parallelogram law of addition $\ R=\ A+\ B$

Commutative law: $oldsymbol{R}=oldsymbol{A}+oldsymbol{B}=oldsymbol{B}+oldsymbol{A}$

Associative law: $oldsymbol{A} + (oldsymbol{B} + oldsymbol{C}) = (oldsymbol{A} + oldsymbol{B}) + oldsymbol{C}$

Vector subtraction:

$$\boldsymbol{R} = \boldsymbol{A} - \boldsymbol{B} = \boldsymbol{A} + (-\boldsymbol{B})$$

note! $\vec{A} - \vec{B} \neq \vec{B} - \vec{A}$ consider previous slide

(-B) has the same magnitude as B but is in opposite direction.

Scalar/Vector multiplication:

$$\alpha(\mathbf{A} + \mathbf{B}) = \alpha \hat{\mathbf{A}} + \alpha \hat{\mathbf{B}}$$

$$(\alpha + \beta)\mathbf{A} = \alpha \hat{\mathbf{A}} + \beta \hat{\mathbf{A}}$$

Force vectors

A force—the action of one body on another—can be treated as a vector, since forces obey all the rules that vectors do.

Generally asked to Solve two types of Problems

* Determine resultant

* resolve force into

Given: Three concurrent forces acting on a tent post.

Find: The magnitude and angle of the resultant force.

use the parallelogram law:

F3 77 P2 F1

Q: Does the order of Fr. Fz. Fz matter?

Dropt! not for

Addition. Try other combinations.

Example

Given: Three concurrent forces acting on a tent post.

Find: The magnitude and angle of the resultant force.

Plan:
a) resolve into x, y components.
b) add components
c) find Mag. And Angle.

$$\vec{f}_{1} = 300 [00+10]N$$
 $\vec{f}_{2} = 450 [005(135)2 + Cos(45)]N$
 $\vec{f}_{3} = 600 [\frac{3}{5}2 + \frac{4}{5}]N$

find using similar triangles.

$$\frac{f_{3x}}{f_{3}} = \frac{3}{5} + \frac{3}{5} = \frac{3}{$$

Cartesian vectors

Rectangular coordinate system: formed by 3 mutually perpendicular axes, the x, y, z axes, with unit vectors i, j, k in these directions.

Note that we use the special notation "^" to identify basis vectors (instead of the "~" notation)

coordinate system

Cartesian vector representation

ralar basis vector

Magnitude of Cartesian vectors

$$A=|{\boldsymbol A}|=\sqrt{A_x^2+A_y^2+A_z^2}$$

Direction of Cartesian vectors

Expressing the direction using a

Direction cosines are the components of the unit vector:

$$u_A = \frac{A}{A}$$

the vector A can be

$$\vec{A} = A \vec{v} = A \frac{\vec{A}}{|\vec{A}|} = A \frac{\langle A_x, A_y, A_z \rangle}{\sqrt{A_x^2 + A_y^2 + A_z^2}}$$

be expressed As.

magnituple of the unit vector is
$$|\vec{u}| = 1$$

$$A = A < (os(a), (os(b), (os(b)))$$

 $(\infty) = \frac{A_x}{|A|}$

(65 (8) = A2

Example

The cables attached to the screw eye are subjected to the three forces shown.

- (a) Express each force vector using the Cartesian vector form (components form).
- (b) Determine the magnitude of the resultant force vector
- (c) <u>Determine</u> the <u>direction cosines</u> of the resultant force vector

a)
$$\vec{F}_1 = 350 < 0$$
, $(0s(50), (0s(40)) N$
 $\vec{F}_2 = 100 < (0s(45), (0s(60), (0s(120)) N)$
 $\vec{F}_3 = 250 < (0s(60), (0s(135), (0s(60)) N)$

b)
$$\vec{f}_{R} = \vec{f}_{1} + \vec{f}_{2} + \vec{f}_{3}$$

$$|\vec{f}_{R}| = \sqrt{2f_{x}^{2} + 2f_{y}^{2} + 2f_{z}^{2}}$$

C)
$$(\cos(\alpha_{R}) = \frac{f_{RX}}{|f_{R}|} \cos(\beta_{R}) = \frac{f_{RY}}{|f_{R}|} \cos(\beta_{R}) = \frac{f_{RZ}}{|f_{R}|}$$