To do...

- Register i>clicker (Compass)
- MATLAB office hours
 - WED/FRI 9-5 pm in MEL 1001
- Mastering Engineering office hours
 - WED/THURS
 - 4-6 pm in Grainger 429
- HW 0 (PrairieLearn) due FRI
- HW 1 (Mastering Engineering) due SUN
- HW 2 (PL) due TUES
- Use Illinois netid/email

Chapter 1: General Principles Main goals and learning objectives

- Introduce the basic ideas of *Mechanics*
- Give a concise statement of Newton's laws of motion and gravitation
- Review the principles for applying the SI system of units
- Examine standard procedures for performing numerical calculations
- Outline a general guide for solving problems

Mechanics

Mechanics is a branch of the physical sciences that is concerned with the state of rest or motion of bodies that are subjected to the action of forces

Rigid Bodies

Statics

Dynamics

Deformable Bodies

Solid Mechanics

Fluids

Compressible and incompressible

Which forces?

www.ashvegas.com

 Mechanics: State of rest or motion of bodies subjected to forces

Fundamental concepts

Basic quantities:

Idealizations:

• <u>Particle</u>:

- Rigid Body:
- <u>Concentrated Force</u>:

Understanding and applying these things allows for amazing achievements in engineering! (planes, robotics, etc)

Newton's laws of motion

Second law: a particle acted upon by an unbalanced force **F** experiences an acceleration **a** that is proportional to the particle mass *m*:

Third law: the mutual forces of action and reaction between two particles are

_____, ____ and

force of A on B $F \longrightarrow F$ $A \longrightarrow B$ force of B on A

Newton's law of gravitational attraction

The mutual **force F of gravitation** between two particles of mass m_1 and m_2 is given by:

G is the universal constant of gravitation (small number) r is the distance between the two particles

Weight is the force exerted by the earth on a particle at the earth's surface:

Figure: 01_PH003
The astronaut's weight is diminished, since she is far removed from the gravitational field of the earth.

 M_e is the mass of the earth

 r_e is the distance between the earth's center and the particle near the surface g is the acceleration due to the gravity

Copyright ©2013 Pearson Education, publishing as Prentice Ha

Castells of Catalonia

Units

TABLE 1-1 Systems of Units

Name	Length	Time	Mass	Force
International	meter	second	kilogram	newton*
System of Units SI	m	S	kg	$\left(\frac{kg \cdot m}{s^2}\right)$
U.S. Customary FPS	foot	second	slug*	pound
	ft	S	$\left(\frac{\mathrm{lb}\cdot\mathrm{s}^2}{\mathrm{ft}}\right)$	lb

*Derived unit.

Copyright ©2013 Pearson Education, publishing as Prentice Hall

$$G = 66.73 \times 10^{-12} \frac{m^3}{kg \cdot s^2}$$

$$g = 9.81 \frac{m}{s^2}$$

$$g = 32.2 \frac{ft}{s^2}$$

Why so picky? Units matter...

- A national power company mixed up prices quoted in kilo-Watt-hour (kWh) and therms.
 - Actual price = \$50,000
 - Paid while trading on the market: \$800,000
- In Canada, a plane ran out of fuel because the pilot mistook liters for gallons!. He landed the plane safely without power on an emergency airstrip.

Mars climate orbiter - \$327.6 million

The 'super-tall' age is here: World welcomes 100th mammoth skyscraper

U.S. Edition + D menu

Could this detachable plane cabin really save lives?

Numerical Calculations

Dimensional Homogeneity

Equations *must* be dimensionally homogeneous, i.e., each term must be expressed in the same units. Consider the following example:

Numerical Calculations

Significant figures

The number of significant figures contained in any number determines the accuracy of the number. Use 3 significant figures for final answers. For intermediate steps, use symbolic notation, store numbers in calculators or use more significant figures, in order to maintain precision.

www.mobileread.com

Example 1: If d = 3.2 in., w = 1.413 in., and h = 2.7 in., then

General procedure for analysis

- 1. Read the problem carefully; write it down carefully.
- 2. Model the problem: Draw given diagrams neatly and construct additional figures as necessary.
- 3. Apply principles needed.
- 4. Solve problem symbolically. Make sure equations are dimensionally homogeneous
- 5. Substitute numbers. Provide proper units *throughout*. Check significant figures. Box the final answer(s).
- 6. See if answer is reasonable.

Most effective way to learn engineering mechanics is to solve problems!