To do...

- Register i>clicker (Compass)
- MATLAB office hours
 - WED/FRI 9-5 pm in MEL 1001
- Mastering Engineering office hours
 - WED/THURS
 - 4-6 pm in Grainger 429
- HW 0 (PrairieLearn) due FRI
- HW 1 (Mastering Engineering) due SUN
- HW 2 (PL) due TUES

Main goals and learning objectives

- Introduce the basic ideas of *Mechanics*
- Give a concise statement of Newton's laws of motion and gravitation
- Review the principles for applying the SI system of units
- Examine standard procedures for performing numerical calculations
- Outline a general guide for solving problems

Q: What is statics? Analysis of loads on Physical Systems in equilibrium.

Mechanics

Mechanics is a branch of the physical sciences that is concerned with the state of rest or motion of bodies that are subjected to the action of forces

* Design objects with

the intention that

they remain in

equilibrium

x Mechanics Important

At many length

SCALES

* close link with materials.

Which forces?

Contact us. field forces.

 Mechanics: State of rest or motion of bodies subjected to forces

Q: # of fundamental forces in nature?

4!

- Strong
- WEAK

- GRAVITY
 Electromagnetic } Action At
 Electromagnetic } A distance \ _> Attraction / repulsion

Fundamental concepts

Basic quantities:

· length

· Mass

· for (F

Idealizations:

Particle:

- has mass but size is neglected

Rigid Body:

- Shape of body Does not change before after Applied force

• Concentrated Force:

-D POTCE Applied over small Area compared to

Understanding and applying these things allows for amazing achievements in engineering! (planes, robotics, etc)

* Length - locate and describe the size of a physical system + mass - measure of a quantity of matter, should not change in * time - Succession of Events * force - action exertED by one body on AnothER.

Lectures Page 6

Newton's laws of motion

First law: An object remains At rest or moves w/ constant velocity in A straight line unless acted upon by A net force

Second law: a particle acted upon by an unbalanced force **F** experiences an acceleration **a** that is proportional to the particle mass *m*:

Third law: the mutual forces of action and reaction between two particles are

Equal, opposite and colingar.

Principia 1687 Newton WOW!

Newton's law of gravitational attraction

The mutual **force F of gravitation** between two particles of mass m_1 and m_2 is given by:

G is the <u>universal constant</u> of gravitation (small number) r is the <u>distance</u> between the two particles

Weight is the force exerted by the earth on a particle at the earth's surface:

$$W = M \frac{GMe}{re^2} = Mg : 9$$

Figure: 01_PH003
The astronaut's weight is diminished, since she is far removed

 M_e is the mass of the earth r_e is the distance between the earth's center and the particle near the surface

g is the acceleration due to the gravity -

Castells of Catalonia

* what is the force ExperienceD here or here

X forces of NATURE PBS

> 7 level tower! Wang= 140 lb

What if you fall?
you statics doesn't work

PE = KE

Mgay = ½mv²

J 29Ay = V

1= V/2gnh

 $\frac{1}{h} = \frac{1}{h} = 1.7 \text{M}$

for n=7,

$$V = \sqrt{2g7h} = \sqrt{14(981 \frac{M}{5^2}) \cdot (1.7 \text{ m})} = 15.3 \text{ M/s}$$
or
$$\frac{33.6 \text{ mph}!}{(\text{ouch!})}$$

Why so picky? Units matter...

- A national power company mixed up prices quoted in kilo-Watt-hour (kWh) and therms.
 - Actual price = \$50,000
 - Paid while trading on the market: \$800,000
- In Canada, a plane ran out of fuel because the pilot mistook liters for gallons!. He landed the plane safely without power on an emergency airstrip.

STYLE

FASHION DESIGN ARCHITECTURE ARTS AUTOS LUXURY

The 'super-tall' age is here: World welcomes 100th mammoth skyscraper

~1400 ft tall

Approx 4-5 football fields tall

Numerical Calculations

Dimensional Homogeneity

Equations must be dimensionally homogeneous, i.e., each term must be expressed in the same units. Consider the following example:

PEMEMBER Dimension There

Numerical Calculations

Significant figures

The number of significant figures contained in any number determines the accuracy of the number. Use 3 significant figures for final answers. For intermediate steps, use symbolic notation, store numbers in calculators or use more significant figures, in order to maintain precision.

Example 1: If d = 3.2 in., w = 1.413 in., and h = 2.7 in., then

the Area is
$$A = \frac{\pi d^2}{4} - wh$$

$$0.3761 \longrightarrow 0.376$$

$$0.1275$$
 — 0.128

General procedure for analysis

- 1. Read the problem carefully; write it down carefully.
- 2. Model the problem: Draw given diagrams neatly and construct additional figures as necessary.
- 3. Apply principles needed.
- 4. Solve problem symbolically. Make sure equations are dimensionally homogeneous
- 5. Substitute numbers. Provide proper units *throughout*. Check significant figures. Box the final answer(s).
- 6. See if answer is reasonable. & Check units; magnitude

Most effective way to learn engineering mechanics is to **solve problems! PRACTICE!!!**

Interpret:

X Read and defermine
what is given and what
to be found
Y make assumptions

Step Plan:

Y think about major
Steps (Road)
Y think About alternative
and creative solutions

Ster Execute:

carry out steps

Appropriate diagrams/egns.

estimate, reflect, revise