Rod CD is pinned to a frictionless collar D and passes through another frictionless collar B. Collar B is welded to the end of lever AB. Rod CD and the lever AB are perpendicular to each other.

1. Show that the position of the collar D with respect to pin A is given by
 \[\mathbf{r}_{AD} = L \mathbf{i} + \left(\frac{d \cos(\theta) + L \cos(\theta) + d \sin(\theta)}{\sin(\theta)} \right) \mathbf{j} \]

2. Use the principal of virtual work to determine the moment M required to hold the system in equilibrium at the position θ when the force P is applied at the collar. Your answer should be a function of θ, P, d and L.

3. Repeat the analysis above using the equations of equilibrium (this is a machine problem).

4. Verify your derivation using $\theta = 60^\circ$, $L = 40$ mm, $d = 80$ mm and $P = 150$ N. The moment required for equilibrium is $M = 16$ N.m.