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Engineering the surface

e Surface morphology and chemistry — different surface property

Roughness

* Liquid droplet behavior on the surface

hydrophilic surface

e Application: ex. Self-cleaning

hydrophobic surface superhydrophobic



Can learn from Nature

e Lotus leaf

Zoom in

* When the leaf tilts a little bit the droplet will roll off.

Cheng, Y. T., et. al. Applied Physics Letters 2005, 87, 194112.



Droplets levitate due to vaporization

The Leidenfrost
Effect

https://commons.wikimedia.org/

wiki/File:Leidenfrost droplet.sv
/ —arop & http://www.irishmanabroad.com/2015/02/scien

ce-saturday-leidenfrost-effect-explained/



In the work we are presenting...

 Combine super-hydrophobic surface + vaporization effect.

* Don’t rely on hot plate to create vapor.

* |n special environment condition, single droplet can jump spontaneously.

doi:10.1038/naturel5738

Spontaneous droplet trampolining on rigid
superhydrophobic surfaces
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Experimental set up and results



Setups and conditions

* Low ambient pressure (0.01 bar)

4 Fluid Cooling

* Low environmental humidity

* Controllable water droplet sizes Nitrogen gas

‘4"—'[

Vacuum Pump

* Silicon micropillar specifications



Spontaneous Trampolining
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Characterizing Motion
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Hunting key Forces
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Continued

* Measure restitution coefficient

U3
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V1
 Assume invariant mass to estimate
the momentum change

At, i
AP = | fdt =~ fAt,
0

* Then estimate average force
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Continued

 Then estimate average force
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Vaporization



Can vaporization account for the driving force

» Vapor flow generate the force needed to accelerate the droplet

* At low pressure

{ high vaporization flux J J

vapor can be trapped
between the micropillar

Excess pressure between
the droplet and the surface




Measuring vaporization flux

* At pressure lower than 0.1bar,

vaporization flux increases 0.8
significantly b
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Extended Data Figure 6 | The role of environmental pressure on the
vaporization flux of a water droplet in a low-humidity environment.



Overpressure due to vaporization

* Overpressure AP « |

* Using the measured vaporization flux, the maximum overpressure AP =
4.7(20/R)

* Since the pressure varies between 0 and 4.7(20/R), the average pressure is
AP =~ 2.3(20/R)

* From previous slides, AP ~ 0.9(25/R,)
R is the contact radius
R, is the radius of the droplet



Modeling



Modeling

* Toy model: forced, mass-spring-damper system.
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Spring: The droplet deforms like a spring
when it impacts the surface.



Modeling

-damper system.
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Droplet freezing



Droplet freezing and levitation

| .
@
" water droplet

superhydrophobic ‘ ’

Strong vaporization

Supercools to -20°C

Aluminum surface, 24°C, ~0.01bar, humidity<10%

g

Recalescent freezing

e Sudden temperature increase: -20°C — 0°C
e Sudden latent heat release

Explosive flux

Levitate




Droplet freezing and levitation

Strong vaporization

Supercools to -20°C

Silicon micropillar surface; 25°C, humidity<10%

-

Recalescent freezing

e Sudden temperature increase: -20°C — 0°C
e Sudden latent heat release

Explosive flux

Levitate




Further studies

* Hydrogel

* Heated surface

* Initial jump: massive water loss

* Trampolining after: same mechanism

Pham, J. T., Paven, M., Wooh, S., Kajiya, T., Butt, H. J., & Vollmer, D. (2017).
Spontaneous jumping, bouncing and trampolining of hydrogel drops on a heated
plate. Nature communications, 8(1), 905.



summary



How is this not violating the second law?

Trampollnng { Resonating force J

High Flux trapped in
vaporlzatlon surface structure

Allowed by second law!




Our critiques

* Pressure control?




Our critiques

* Pressure control?

* The estimation of AP = 2.3(26/R) is

too rough

* 0.9(20/Ry) and 2.3(20/R) are not
consistent as the authors claimed.

* |t does not contain enough
experimental trials to convince
readers that the shown contact
radius dynamics is a good
representation of the general trend.
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Thanks!




