## Floquet Time Crystals

Dominic V. Else, Bela Bauer, and Chetan Nayak Phys. Rev. Lett. 117, 090402 - Published 25 August 2016



Presented by: Jacob Leistico, Shaun Lahert Somang Kim, Mengdi Zhao, Mick Krongchon

Department of Physics University of Illinois at Urbana-Champaign PHYS 596, Dec 1, 2016

# Conventional (spatial) crystals exhibit spontaneous symmetry breaking

- The ground state of a system does not share the symmetry of the Hamiltonian
- Transition is conceptually described as a ball in a "Mexican hat" potential that breaks the symmetry around the axis by rolling down
- The Hamiltonian of conventional crystals has continuous translational symmetry, while the ground state has discrete translational symmetry



## Exploration of time crystals requires a precise definition of time translation symmetry breaking

- In 2012, Frank Wilczek proposed the idea of crystals that break time translation symmetry, or "time crystals"
- In analogy with a space crystal, the ground state of a time crystal will spontaneously organize into periodic motion in time
- Wilczek considered a system that can spontaneously turn to periodic motion even in the lowest energy state (proven to be impossible by Watanabe and Oshikawa in 2015)
- In 2016, Else et al (this paper) proposed two definitions for time translation symmetry breaking in periodically driven systems and explicitly constructed a spin chain system satisfying these definitions.

# Example of Spontaneous Symmetry Breaking: The Ising Model

- Consists of a lattice with an Ising spin at each lattice site that is either up or down
- Energy comes from interactions between the spins:  $H = -\sum_{i,j} J_i \sigma_i^{(z)} \sigma_j^{(z)}$ ,  $J_i > 0$ .
- The physical ground states are spins all up or all down.
- A quantum state formed from a superposition of these is unstable to weak perturbations or interactions with the environment

### Extending these ideas to Time Translation Symmetry Breaking

- The authors of this paper look at periodically driven systems with discrete time translation symmetry
- Time translation symmetry breaking occurs when the symmetry respecting "stationary states" are unstable to infinitesimal perturbations or interactions with the environment



#### Analytical Example of TTSB proposed by the Author Time evolution operator (Floquet operator)

$$U_f = \exp\left(-it_0 H_{\text{MBL}}\right) \exp\left(it_1 \sum_{i} \sigma_i^x\right)$$

where 
$$H_{\mathrm{MBL}} = \sum_i (J_i \sigma_i^z \sigma_{i+1}^z + h_i^z \sigma_i^z + h_i^x \sigma_i^x)$$















• To simplify choose: 1.  $t_1 \approx \pi/2$   $\Longrightarrow \exp(i(\pi/2)\sum_i \sigma_i^x) = \prod_i i \sigma_i^x$ 

$$h_i^x = 0$$
  $\longrightarrow$   $H_{\text{MBL}} = \sum_i (J_i \sigma_i^z \sigma_{i+1}^z + h_i^z \sigma_i^z)$ 

• The time period of H:  $^{T=t_0+\pi/2}$ 

$$|\uparrow \cdots \uparrow\rangle \xrightarrow{t_1 = \pi/2} |\downarrow \cdots \downarrow\rangle \xrightarrow{t_0} |\downarrow \cdots \downarrow\rangle$$

## Analytical Example of TTSB proposed by the Author Analytical Solution of $U_f$ and TTSB

• The eigenstates of  $U_f$  are analytic since  $t_1=\pi/2$  and  $h_i^x=0$   $|\psi\{s_i\}>=(\exp(it_0E^-(\{s_i\})/2)|\{s_i\}\rangle\pm\exp(-it_0E^-(\{s_i\})/2)|\{-s_i\}\rangle)/\sqrt{2}$  with eigenvalue  $\pm\exp(it_0E^+(\{s_i\}))$  where  $E^-(\{s_i\})=\sum_i(h_i^zs_i)$  and  $E^+(\{s_i\})=\sum_i(J_is_is_{i+1})$ 

- $\sigma_k^z |\{s_i\}\rangle = s_k |\{s_i\}\rangle$
- Period of Hamiltonian : T Period of the eigenstates of Hamiltonian  $|\{s_i\}\rangle$  : 2T Period of the eigenstates of Time evolution operator  $|\psi\{s_i\}\rangle$  : T
- means that in this system TTSB occurs.

### TTSB occurs in a region of parameter space (TTSB phase)

Two classes of perturbations:

- 1. Deviations of t\_1 from pi/2
- 2. Non-zero h  $\rightarrow$  h = 0.3

$$U_f = \exp\left(-it_0 H_{\text{MBL}}\right) \exp\left(it_1 \sum_{i} \sigma_i^x\right)$$

$$H_{\mathrm{MBL}} = \sum_{i} (J_i \sigma_i^z \sigma_{i+1}^z + h_i^z \sigma_i^z + h_i^x \sigma_i^x),$$

TTSB still occurs under small perturbation:



Simulation to much later times shows that the lifetime of TTSB diverges in system size:



### Conclusion & Impact of the Paper

- First paper to put forward two consistent equivalent definitions of TTSB which can be used to test for TTSB in physical systems.
- First to show these TTSB states are robust with respect to small perturbations and show that these states are stable in the thermodynamic limit.
- The first experiment (Zhang et al., 2017) which physically demonstrated
  TTSB did so using the blueprint laid out in the paper.
- Implications for the definitions of many body localised systems.
- Cited 48 times (published) 97 times (published and pre-published)

#### Critique

#### The good

- Analytic and numerical analysis well supported the author's claims on TTSB.
- Offered a conceptually simple blueprint for an experiment to verify their conclusions.

#### The bad

- Paper is entirely focused on TTSB in MBL spin chain systems, fails to mention any possible generalisations or extensions.
- Authors determine that TTSB exists for a phase but do not provide a phase diagram.
- Their "Implication of TTSB" section feels underwhelming, only mentions a consequence for the the definition of many body localised systems.
- Published in PRL but presumed a large amount of domain specific knowledge from multiple fields.

### Summary

#### The authors:

- Consistently formalise TTSB.
- Provide a model which explicitly shows TTSB.
- Give numerical and analytical evidence for the existence of a stable phase exhibiting TTSB.
- Provide a blueprint for an experiment to demonstrate TTSB, which has since been performed.

For further reading on the subject:

Sacha K, Zakrzewski J. 2017. *Time crystals: a review*. arXiv:1704.03735