Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres¹

Team 1: Yunkai Wang, Brandon Buncher, James Allen, Nick Abboud, Anuva Aishwarya

¹Hensen, B., *et al.* (2015) Nature, 526 (7575), pp. 682-686.

Theory Methods Experimental Setup Data Analysis Conclusion Cri
--

EPR (Einstein-Podolsky-Rosen) Paradox

 $\ket{\psi} = \frac{1}{\sqrt{2}} (\ket{0}_A \ket{0}_B + \ket{1}_A \ket{1}_B)$

• Outcome of the measurement on qubit A could determine the outcome of the measurement on qubit B even if the two measurement events are space like

• Contradict with special relativity?

Physical review, 47(10), 777 (1935)

Conclusion

Two Explanations of the Paradox

• Non-locality:

Influence could travel faster than c in Quantum Mechanics

Does not allow for faster-than-light communication

• Hidden variables:

Outcome of measurement is determined by some hidden variables λ Two qubits get same hidden variables λ when they are entangled Measurement of A provides information about λ which is local to B

Physical review, 47(10), 777 (1935)

Test the two explanations experimentally

For hidden variables case:

CHSH (Clauser-Horne-Shimony-Holt) Inequality

- Outcome of the measurement on qubit A,B along direction \hat{a} , \hat{b} respectively with the same hidden variables λ : $A(\hat{a}, \lambda) \in \{-1, 1\}$ $B(\hat{b}, \lambda) \in \{-1, 1\}$
- Denote correlation between two measurement $\int d\lambda \rho(\lambda) A(\hat{a}, \lambda) B(\hat{b}, \lambda)$ as $P(\hat{a}, \hat{b})$, where $\rho(\lambda)$ is probability distribution with respect to λ

Correlation of measurements on four directions is constrained:

 $|P(\hat{a},\hat{b}) - P(\hat{a},\hat{c}) + P(\hat{d},\hat{c}) + P(\hat{d},\hat{b})| \le 2$

Physical review letters, 23(15), 880. (1969)

Violation of CHSH Inequality in Quantum Mechanics

In quantum mechanics:

- The correlation between measurement is not constrained as strong as in hidden variables theory
- $P(\hat{a}, \hat{b}) = \langle \psi_{AB} | (\hat{\sigma}_A \cdot \hat{a}) (\hat{\sigma}_B \cdot \hat{b}) | \psi_{AB} \rangle = -\cos \theta_{ab}$
- Construct the measurement in four directions as shown in the figure

 $\begin{aligned} \theta_{ab} &= \pi/4, \ \theta_{ac} = 3\pi/4, \ \theta_{dc} = \pi/4, \ \theta_{db} = \pi/4\\ |P(\hat{a}, \hat{b}) - P(\hat{a}, \hat{c}) + P(\hat{d}, \hat{c}) + P(\hat{d}, \hat{b})| = 2\sqrt{2} > 2 \end{aligned}$

- CHSH inequality is violated!
- Quantum mechanics is non-local

Figure 1: Directions of measurement

Previous Bell Test Experiment Loopholes

- Previous tests of Bell's inequality have loopholes
 - None have simultaneously closed detection and locality
 - Detection: detection efficiency is not 100%
 - Subsample may violate Bell inequality when the whole data set does not
 - Locality: timelike separation between measurement sites allows communication

Previous Bell Test Experiment Loopholes

- Previous tests of Bell's inequality have loopholes
 - None have simultaneously closed detection and locality
 - Detection: detection efficiency is not 100%
 - Subsample may violate Bell inequality when the whole data set does not
 - Locality: timelike separation between measurement sites allows communication
- Loophole-free Bell test would fundamentally test QM

Previous Bell Test Experiment Loopholes

- Previous tests of Bell's inequality have loopholes
 - None have simultaneously closed detection and locality
 - Detection: detection efficiency is not 100%
 - Subsample may violate Bell inequality when the whole data set does not
 - Locality: timelike separation between measurement sites allows communication
- Loophole-free Bell test would fundamentally test QM
- Test security of QM security protocols
 - Use Bell tests to detect interception

Closing Detection and Locality Loopholes

• Goal: close all measurement loopholes

Closing Detection and Locality Loopholes

- Goal: close all measurement loopholes
- Photons with uncorrelated spins emitted from A and B, measured at C

Closing Detection and Locality Loopholes

- Goal: close all measurement loopholes
- Photons with uncorrelated spins emitted from A and B, measured at C
- Additional signal to close detection loophole
 - \circ \quad Determines whether both photons arrived simultaneously

Creating and Entangling Electron Spins

Physical review A, 71(6), 060310 (2005)

Reading Out the Entangled Spins

- The group uses two binary RNGs to choose between two measurement bases to evaluate A and B on
- After evaluation, but before entanglement is confirmed, the group rotates to the required basis and reads out the signal.
- Rotation and readout takes <4.27µs (the amount of time it would take for sites A and B to communicate).

Theory	Methods	Experimental Setup	Data Analysis	Conclusion	Critiques
--------	---------	--------------------	---------------	------------	-----------

Preliminary experiments predict strong entanglement

- Ignored site B, and generated spin-photon entanglement at A
- Measured spin at A and photon arrival time at C
- Spin is entangled with photon arrival time

Generated spin states are highly entangled

Measurement outcomes for successful entanglement attempts (dotted: prediction based on model ρ)

- Ran experiment with fixed collinear measurement bases
- Data indicates entanglement
- Gives a lower bound $\langle \Psi^- | \rho | \Psi^- \rangle > 0.83 \pm 0.05$
- Numerically optimized angles of measurement bases for maximal correlations

Theory	Methods	Experimental Setup	Data Analysis	Conclusion	Critiques
--------	---------	--------------------	---------------	------------	-----------

CHSH-Bell inequality is violated with p-value 0.039

- Experiment was iterated 1 billion times per hour
 - Spin-photon entanglement at A and B
 - Two-photon measurement and event-ready signal at C
 - Measure spins along random bases
- 245 successful entanglements during 220 hours of data collection
- Iterations with successful 1280 m entanglements were used to find S.
- Found S= 2.42 ± 0.20, violating S≤2

Theory	Methods	Experimental Setup	Data Analysis	Conclusion	Critiques

Conclusions

Reports the first Loophole-free Bell inequality violation detection using electrons. They found S = 2.42 ± 0.20

as compared to $S \leq 2$

- It successfully closes the **detection** loophole and the **locality** loophole.
- Uses an event-ready scheme to generate entanglement between electrons separated by 1.28 km.
- Statistically significant result with a P value of 0.039.

Theory	Methods	Experimental Setup	Data Analysis	Conclusion	Critiques		
Critiques							
 A concise and well-written abstract, which answers all the questions expected of it. 							

- For every 'field-specific term' that is used, a nice review paper/ publication (that first introduced the concept) has been cited. This makes the paper an ideal-read for a general Physics audience.
- Explains the footing of their experiment in the light of several past failures in the field.
- Covers all the bases- provides a detailed characterization of the experimental setup and explicitly shows how both the loopholes are taken care of.
- The paper is self-sufficient. But whatever little has been left out, is covered by the Supplementary Information.

Theory	Methods	Experimental Setup	Data Analysis	Conclusion	Critiques
--------	---------	--------------------	---------------	------------	-----------

Citation Report

- This paper was published on 29 October 2015
- It has been cited 314 times. (Scopus, 12 December 2017)
 - Facebook Shares, likes and comments 1379
 - Twitter 200 Tweets
- A really important scientific paper in the field of quantum information.
- The follow up work, by a different group. Cited 149 times. It does a Loopholefree test of the Bell's inequality with entangled photons.

PRL 115, 250401 (2015)	Selected for a PHYSICAL RE	VIEW	t in <i>Physics</i> LETTERS	week ending 18 DECEMBER 2015
	\$	5		
Significant-Loo	phole-Free Test of Be	ll's Th	neorem with E	ntangled Photons
Marissa Giustina, ^{1,2,*} Marijn A Kevin Phelan, ¹ Fabian Steir Valerio Pruneri, ^{5,6} Morgan Sae Woo Nam, ⁸ Tho	. M. Versteegh, ^{1,2} Sören We nlechner, ¹ Johannes Kofler, ¹ W. Mitchell, ^{5,6} Jörn Beyer, omas Scheidl, ^{1,2} Rupert Urst	ngerows Jan-Åk ⁷ Thoma n, ¹ Berr	sky, ^{1,2} Johannes Ha te Larsson, ⁴ Carlos as Gerrits, ⁸ Adrian thard Wittmann, ^{1,2}	a E. Lita, ⁸ Lynden K. Shalm, ⁸ and Anton Zeilinger ^{1,2}