Physics 570 Homework 9

Due Wednesday, November 29, 2017

Problem 1 (50 points)

Prob. 6.7 of Thomson

Problem 2 (30 points)

Prob. 6.10 of Thomson
Problem 3 (20 points)
In a recent lecture, we showed that the $1+\cos ^{2} \theta$ angular distribution in the center-ofmass frame for the $e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$reaction at high energy can be obtained from the consideration of helcity conservation.
a) If the e^{-}beam and the e^{+}beam both have positive helicity, what would the angular distribution be?
b) Now consider the $\nu_{\mu}+\bar{\nu}_{\mu} \rightarrow \nu_{e}+\bar{\nu}_{e}$ reaction, which proceeds via $\nu_{\mu}+\bar{\nu}_{\mu} \rightarrow Z^{0} \rightarrow \nu_{e}+\bar{\nu}_{e}$, what would the angular distribution be? Note that ν has negative helicity and $\bar{\nu}$ has positive helcity at high energies.

Note the following values for the rotation matrices:

$$
d_{1}^{1}(\theta)=d_{-1-1}^{1}(\theta)=(1+\cos \theta) / 2 ; \quad d_{-1}^{1}{ }_{1}(\theta)=d_{1-1}^{1}(\theta)=(1-\cos \theta) / 2
$$

