Physics 570 Homework 7

Due Wednesday, Nov. 1, 2017

Problem 1 (20 points)

How does $\bar{\psi} \sigma^{\mu \nu} \psi$ transform under proper Lorentz transformation? How does each of the six components of $\bar{\psi} \sigma^{\mu \nu} \psi$ transform under space inversion?

Problem 2 (25 points)

a) The operators

$$
P_{R} \equiv \frac{1}{2}\left(1+\gamma^{5}\right), \quad P_{L} \equiv \frac{1}{2}\left(1-\gamma^{5}\right)
$$

are the right-hand and left-hand projection operators. Show that they have the appropriate properties to be projection operators, namely,

$$
P_{L}^{2}=P_{L}, \quad P_{R}^{2}=P_{R}, \quad P_{L}+P_{R}=1, \quad P_{L} P_{R}=0
$$

b) The operators to project out the positive and negative energy states for the Dirac spinors are

$$
\Lambda_{+} \equiv \frac{p p+m}{2 m}, \quad \Lambda_{-} \equiv \frac{-\not p+m}{2 m} .
$$

Show that they have the appropriate properties to be projection operators, namely,

$$
\Lambda_{-}^{2}=\Lambda_{-}, \quad \Lambda_{+}^{2}=\Lambda_{+}, \quad \Lambda_{+}+\Lambda_{-}=1, \quad \Lambda_{+} \Lambda_{-}=0
$$

Problem 3 (25 points)

In terms of a four-component spinor ψ, the right- and left-handed helicity states are defined as

$$
\begin{aligned}
& \psi_{R}=\frac{1}{2}\left(1+\gamma_{5}\right) \psi \\
& \psi_{L}=\frac{1}{2}\left(1-\gamma_{5}\right) \psi
\end{aligned}
$$

Show that

$$
\begin{aligned}
& \bar{\psi} \gamma_{\mu} \psi=\bar{\psi}_{L} \gamma_{\mu} \psi_{L}+\bar{\psi}_{R} \gamma_{\mu} \psi_{R} \\
& \bar{\psi} \gamma_{\mu} \gamma_{5} \psi=\bar{\psi}_{L} \gamma_{\mu} \gamma_{5} \psi_{L}+\bar{\psi}_{R} \gamma_{\mu} \gamma_{5} \psi_{R} \\
& \bar{\psi} m \psi=\bar{\psi}_{L} m \psi_{R}+\bar{\psi}_{R} m \psi_{L}
\end{aligned}
$$

This exercise shows that the vector and axial vector currents do not connect spinors of different chirality, while the mass m (or scalar potential) flips helicity.

Problem 4 (30 points)

Define

$$
\psi_{L}=\frac{1-\gamma_{5}}{2} \psi ; \quad \psi_{R}=\frac{1+\gamma_{5}}{2} \psi
$$

a) Show that the charge conjugate of ψ_{L} is right-handed and the charge conjugate of ψ_{R} is left-handed.
b) Under time-reversal transformation, what are the handedness of ψ_{L}^{\prime} and ψ_{R}^{\prime} ?
c) Under parity transformation, what are the handedness of ψ_{L}^{\prime} and ψ_{R}^{\prime} ?

