Physics 570 Homework 5
 Due Wednesday, October 11, 2017

Problem 1 (25 points)

Construct the spin-flavor wave functions, as in Eq. (9.26) of Thomson, for the following hadrons:
(a) $\rho^{\circ}\left(J_{z}=0\right)$
(b) η
(c) $\Delta^{+}\left(J_{z}=-1 / 2\right)$
(d) $\Sigma^{-}\left(J_{z}=1 / 2\right)$
(e) $\bar{p}\left(J_{z}=-1 / 2\right)$ (antiproton)

Problem 2 (25 points)

a) What are the quark model predictions for the magnetic dipole moments of the following vector mesons $\left(J^{P}=1^{-}\right)$?

$$
\left(K^{*+}, K^{* 0}, \rho^{+}, \rho^{0}, \rho^{-}, \omega, \bar{K}^{* 0}, K^{*-}, \phi\right)
$$

Express the results in terms of $\mu_{u}, \mu_{d}, \mu_{s}$.
b) Find the quark model predictions of the magnetic dipole moment of Σ^{0}. Also find the $\Sigma^{0} \rightarrow \Lambda^{0}$ transition matrix element $<\Lambda^{0} \uparrow\left|\sum_{i=1}^{3} \mu_{i}\left(\sigma_{z}\right)_{i}\right| \Sigma^{0} \uparrow>$. Express the results in terms of $\mu_{u}, \mu_{d}, \mu_{s}$.

Problem 3 (25 points)
Prob. 9.5 of Thomson.

Problem 4 (25 points)

Prob. 9.10 of Thomson.

