Physics 570 Homework 4

Due Wednesday, October 4, 2017

Problem 1 (20 points)

A neutral meson X has J=1 (J is the total angular momentum) and a neutral meson Y has J=2. Both X and Y can decay to $\pi^+\pi^-$ by strong interaction. What are the C and P parities of X and Y? Is $X \to \pi^0 + \gamma$ decay allowed by electromagnetic interaction? Is $Y \to \pi^0 + \gamma$ decay allowed by electromagnetic interaction?

Problem 2 (20 points)

The dominant decays of the η meson are

$$\eta \to 2\gamma \ (39\%), \ \eta \to 3\pi \ (56\%), \ \eta \to \pi\pi\gamma \ (5\%)$$

and it's classified as a "stable" particle, so evidently none of these is a purely strong interaction. Offhand, this seems odd, since at 549 MeV/c² the η has plenty of mass to decay strongly into 2π or 3π .

- a) Explain why the 2π mode is forbidden, for both strong and electromagnetic interactions.
- b) Explain why the 3π mode is forbidden as a strong interaction, but allowed as an electromagnetic decay.

Problem 3 (15 points)

You are planning for a new experiment to search for an exotic meson which can not be described as a quark-antiquark bound state. Which of the following decay channel(s) for X would prove unambiguously that X is indeed an exotic meson? Assume that these decays proceed via strong interaction.

a)
$$X \to \pi^+ + \pi^0$$

b)
$$X \to K^- + \pi^+ + K^-$$

c)
$$X \to \pi^+ + \pi^0 + \pi^+$$

Problem 4 (25 points)

Assuming isospin conservation, are the following reactions allowed?

(a)
$$d + d \rightarrow {}^{4}He + \omega$$

(b)
$$d + d \rightarrow {}^{4}He + \eta$$

(c)
$$d + d \rightarrow {}^{4}He + \rho^{\circ}$$

(d)
$$p + d \rightarrow {}^{3}He + \eta$$

(e)
$$p + p \rightarrow d + \rho^+$$

Problem 5 (20 points)

Find the effect of space-inversion (P) and time-reversal (T) operations on the following quantities:

- a) position (r)
- b) momentum (\mathbf{p})
- c) spin (σ)
- d) electric field (E)
- e) magnetic field (B)
- f) magnetic dipole moment $(\sigma \cdot \mathbf{B})$
- g) electric dipole moment $(\sigma \cdot \mathbf{E})$
- h) spin correlation $(\sigma_1 \cdot \sigma_2)$
- i) longitudinal polarization $(\boldsymbol{\sigma}\cdot\mathbf{p})$
- j) transverse polarization $(\sigma \cdot (\mathbf{p_1} \times \mathbf{p_2}))$