Physics 570 Homework 3

Due Wednesday, September 27, 2017

Problem 1 (30 points)

In an earlier experiment, it was reported that a new particle, X, was found in the following reaction:

$$
K^{+}+d \rightarrow p+X
$$

where d and p represents deuteron and proton, respectively. This reaction proceeds via strong interaction, which conserves quark flavors, isospin, parity, and so on.
a) What is the quark content of X ? (The quark content of K^{+}is $u \bar{s}$).
b) What are the possible values for the isospin of the particle X ?
c) The following decays have been observed for the particle X :

$$
X \rightarrow K^{+}+n \text { and } X \rightarrow K^{\circ}+p
$$

where both decays proceed via strong interaction. What are the possible values for R, which is the ratio of the rates of these two decays?

$$
R=\Gamma\left(X \rightarrow K^{+}+n\right) / \Gamma\left(X \rightarrow K^{\circ}+p\right)
$$

From the measurement of R, can the experimenters determine the isospin of the particle X ?

Isospin of some particles:

p, n form isospin doublets ($I=1 / 2$)
K^{+}, K° form isospin doublets $(I=1 / 2)$
deuteron is an isospin singlet $(I=0)$
Problem 2 (30 points)
a) Consider the following three reactions at a given center-of-mass energy:
(a) $\pi^{+}+p \rightarrow K^{+}+\Sigma^{+}$
(b) $\pi^{-}+p \rightarrow K^{\circ}+\Sigma^{\circ}$
(c) $\pi^{-}+p \rightarrow K^{+}+\Sigma^{-}$

Through which isospin channels can these reactions proceed? Find the ratio of the cross sections for these reactions by assuming that one or the other isospin channel dominates.
b) At a given center-of-mass energy, find the ratio of cross sections for
(a) $p+d \rightarrow{ }^{3} \mathrm{He}+\pi^{\circ}$
(b) $p+d \rightarrow{ }^{3} H+\pi^{+}$
c) Assuming isospin conservation, are the following reactions allowed?
(a) $d+d \rightarrow{ }^{4} H e+\omega$
(b) $d+d \rightarrow{ }^{4} \mathrm{He}+\eta$
(c) $d+d \rightarrow{ }^{4} \mathrm{He}+\rho^{\circ}$
(d) $p+d \rightarrow{ }^{3} \mathrm{He}+\eta$
(e) $p+p \rightarrow d+\rho^{+}$

Note that d and p represents deuteron and proton, respectively. The isospin of some particles are listed at the end.

Problem 3 (20 points)

Problem 9.3 of Thomson

Problem 4 (20 points)

Show that isospin conservation implies that the angular distribution of neutral pions produced in the reaction $n+p \rightarrow d+\pi^{0}$ should be symmetric with respect to 90° in the center-of-mass system.
(Actually, an experiment has clearly shown an asymmetry, providing evidence for isospin violation. See Phys. Rev. Lett. 91 (2003) 142302.)

Isospin of some particles:

$\Delta^{++}, \Delta^{+}, \Delta^{0}, \Delta^{-}$form isospin quartets $(I=3 / 2)$
$\Sigma^{+}, \Sigma^{\circ}, \Sigma^{-}$form isospin triplets $(I=1)$
$\pi^{+}, \pi^{\circ}, \pi^{-}$form isospin triplets $(I=1)$
$\rho^{+}, \rho^{\circ}, \rho^{-}$form isospin triplets $(I=1)$
η is an isospin singlet $(I=0)$
ω is an isospin singlet $(I=0)$
${ }^{3} \mathrm{He},{ }^{3} \mathrm{H}$ form isospin doublets $(I=1 / 2)$
${ }^{4} \mathrm{He}$ is an isospin singlet $(I=0)$

Clebsch-Gordon coefficients $<J M \mid J_{1}, m_{1}, J_{2}, m_{2}>$

$$
\begin{aligned}
& <1,1 \mid 1 / 2,1 / 2,1 / 2,1 / 2>=1 \\
& <1,0 \mid 1 / 2,1 / 2,1 / 2,-1 / 2>=\sqrt{1 / 2} \\
& <1,0 \mid 1 / 2,-1 / 2,1 / 2,1 / 2>=\sqrt{1 / 2} \\
& <1,-1 \mid 1 / 2,-1 / 2,1 / 2,-1 / 2>=1 \\
& <0,0 \mid 1 / 2,1 / 2,1 / 2,-1 / 2>=\sqrt{1 / 2} \\
& <0,0 \mid 1 / 2,-1 / 2,1 / 2,1 / 2>=-\sqrt{1 / 2} \\
& <3 / 2,3 / 2 \mid 1 / 2,1 / 2,1,1>=1 \\
& <3 / 2,1 / 2 \mid 1 / 2,-1 / 2,1,1>=\sqrt{1 / 3} \\
& <3 / 2,1 / 2 \mid 1 / 2,1 / 2,1,0>=\sqrt{2 / 3} \\
& <3 / 2,-1 / 2 \mid 1 / 2,1 / 2,1,-1>=\sqrt{1 / 3} \\
& <3 / 2,-1 / 2 \mid 1 / 2,-1 / 2,1,0>=\sqrt{2 / 3} \\
& <3 / 2,-3 / 2 \mid 1 / 2,-1 / 2,1,-1>=1 \\
& <1 / 2,1 / 2 \mid 1 / 2,1 / 2,1,0>=-\sqrt{1 / 3} \\
& <1 / 2,1 / 2 \mid 1 / 2,-1 / 2,1,1>=\sqrt{2 / 3} \\
& <1 / 2,-1 / 2 \mid 1 / 2,-1 / 2,1,0>=\sqrt{1 / 3} \\
& <1 / 2,-1 / 2 \mid 1 / 2,1 / 2,1,-1>=-\sqrt{2 / 3}
\end{aligned}
$$

