Physics 570 Homework 3

Due Wednesday, September 27, 2017

Problem 1 (30 points)

In an earlier experiment, it was reported that a new particle, X, was found in the following reaction:

$$K^+ + d \to p + X$$

where d and p represents deuteron and proton, respectively. This reaction proceeds via strong interaction, which conserves quark flavors, isospin, parity, and so on.

- a) What is the quark content of X? (The quark content of K^+ is $u\bar{s}$).
- b) What are the possible values for the isospin of the particle X?
- c) The following decays have been observed for the particle X:

$$X \to K^+ + n$$
 and $X \to K^\circ + p$,

where both decays proceed via strong interaction. What are the possible values for R, which is the ratio of the rates of these two decays?

$$R = \Gamma(X \to K^+ + n) \ / \ \Gamma(X \to K^\circ + p)$$

From the measurement of R, can the experimenters determine the isospin of the particle X?

Isospin of some particles:

p, n form isospin doublets (I = 1/2)

 K^+, K° form isospin doublets (I = 1/2)

deuteron is an isospin singlet (I = 0)

Problem 2 (30 points)

- a) Consider the following three reactions at a given center-of-mass energy:
 - (a) $\pi^+ + p \to K^+ + \Sigma^+$
 - (b) $\pi^- + p \to K^{\circ} + \Sigma^{\circ}$
 - (c) $\pi^{-} + p \to K^{+} + \Sigma^{-}$

Through which isospin channels can these reactions proceed? Find the ratio of the cross sections for these reactions by assuming that one or the other isospin channel dominates.

b) At a given center-of-mass energy, find the ratio of cross sections for

(a)
$$p + d \rightarrow {}^{3}He + \pi^{\circ}$$

(b)
$$p + d \to {}^{3}H + \pi^{+}$$

c) Assuming isospin conservation, are the following reactions allowed?

(a)
$$d + d \rightarrow {}^{4}He + \omega$$

(b)
$$d + d \rightarrow {}^{4}He + \eta$$

(c)
$$d + d \rightarrow {}^{4}He + \rho^{\circ}$$

(d)
$$p + d \rightarrow {}^{3}He + \eta$$

(e)
$$p + p \rightarrow d + \rho^+$$

Note that d and p represents deuteron and proton, respectively. The isospin of some particles are listed at the end.

Problem 3 (20 points)

Problem 9.3 of Thomson

Problem 4 (20 points)

Show that isospin conservation implies that the angular distribution of neutral pions produced in the reaction $n+p\to d+\pi^0$ should be symmetric with respect to 90° in the center-of-mass system.

(Actually, an experiment has clearly shown an asymmetry, providing evidence for isospin violation. See Phys. Rev. Lett. 91 (2003) 142302.)

Isospin of some particles:

$$\Delta^{++}, \Delta^{+}, \Delta^{0}, \Delta^{-}$$
 form isospin quartets $(I=3/2)$

$$\Sigma^+, \Sigma^\circ, \Sigma^-$$
 form isospin triplets $(I=1)$

$$\pi^+,\pi^\circ,\pi^-$$
 form isospin triplets $(I=1)$

$$\rho^+, \rho^{\circ}, \rho^-$$
 form isospin triplets $(I=1)$

 η is an isospin singlet (I=0)

 ω is an isospin singlet (I=0)

 $^{3}He, ^{3}H$ form isospin doublets (I=1/2)

 ${}^{4}He$ is an isospin singlet (I=0)

Clebsch-Gordon coefficients $< JM|J_1, m_1, J_2, m_2 >$

$$<1,1|1/2,1/2,1/2,1/2>=1$$

$$<1,0|1/2,1/2,1/2,-1/2> = \sqrt{1/2}$$

$$<1,0|1/2,-1/2,1/2,1/2>=\sqrt{1/2}$$

$$<1,-1|1/2,-1/2,1/2,-1/2>=1$$

$$<0,0|1/2,1/2,1/2,-1/2> = \sqrt{1/2}$$

$$<0,0|1/2,-1/2,1/2,1/2> = -\sqrt{1/2}$$

$$<3/2,3/2|1/2,1/2,1,1>=1$$

$$<3/2,1/2|1/2,-1/2,1,1>=\sqrt{1/3}$$

$$<3/2,1/2|1/2,1/2,1,0>=\sqrt{2/3}$$

$$<3/2,-1/2|1/2,1/2,1,-1>=\sqrt{1/3}$$

$$<3/2,-1/2|1/2,-1/2,1,0>=\sqrt{2/3}$$

$$<3/2, -3/2|1/2, -1/2, 1, -1>=1$$

$$<1/2,1/2|1/2,1/2,1,0> = -\sqrt{1/3}$$

$$<1/2,1/2|1/2,-1/2,1,1>=\sqrt{2/3}$$

$$<1/2,-1/2|1/2,-1/2,1,0>=\sqrt{1/3}$$

$$<1/2,-1/2|1/2,1/2,1,-1> = -\sqrt{2/3}$$