Physics 570 Homework 10

Due Wednesday, December 6, 2017

Problem 1 (20 points)

Consider a nucleus with a spherically symmetric charge distribution $\rho(r)$, where $\int \rho(r)d^3r = 1$. The form factor in electron scattering off nucleus can be expressed as

$$F(q) = \int \rho(r) e^{-i\vec{q}\cdot\vec{r}} d^3r$$

- a) show that $F(q) = \frac{4\pi}{q} \int_0^\infty \rho(r) \ r \ sin(qr) \ dr$
- b) show that $F(q) = 1 \frac{q^2 < r^2 >}{6} + ...$, where $r^2 >$ is the mean square charge radius $r^2 > 4\pi \int_0^\infty \rho(r) r^4 dr$.
- c) Calculate F(q) and $\langle r^2 \rangle$ for $\rho(r) = \rho_0 e^{-\alpha r}$
- d) Calculate F(q) and $\langle r^2 \rangle$ for $\rho(r) = \rho_0 e^{-\alpha r}/r$

Problem 2 (30 points)

Calculate the differential cross section of the $e^-e^+ \to \mu^-\mu^+$ reaction in the center-of-mass frame without making any approximations. Show that the total cross section is

$$\sigma(e^-e^+ \to \mu^-\mu^+) = \frac{4\pi\alpha^2}{3s} \sqrt{\frac{1-M^2/E^2}{1-m^2/E^2}} \left[1 + \frac{1}{2} \frac{M^2}{E^2}\right] \left[1 + \frac{1}{2} \frac{m^2}{E^2}\right],$$

where E is the electron energy in the center-of-mass frame, m and M are the masses of the electron and muon, respectively.

Problem 3 (25 points)

Prove the Gottfried Sum Rule:

$$\int_0^1 \left[F_2^p(x) - F_2^n(x) \right] / x \, dx = \frac{1}{3},$$

where F_2^p and F_2^n are the proton and neutron structure functions, respectively. Assume charge symmetry for the proton and neutron parton distributions (i.e., up-quark distribution in the proton is the same as the dwon-quark distribution in the neutron, anti-up quark distribution in the neutron is identical to the anti-down quark distribution in the proton, etc.). In addition, assume that the anti-up quark and anti-down quark distributions in the proton are identical. Experimentally, this Sum Rule was found to be broken.

Problem 4 (25 points)

Assume that the momentum distribution of up valence quarks, u_v , in the proton has the form

$$xu_v(x) = a_1 x^{0.5} (1-x)^2,$$

and the momentum distribution of anti-down valence quarks, \bar{d}_v , in the antiproton has the form

$$x\bar{d}_v(x) = a_2 x^{0.5} (1-x)^3,$$

where x is the Bjorken variable. Find a_1 and a_2 . What is the fraction of proton's momentum carried by the up valence quarks? and by the down valence quarks?