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Chapter 2 

 

Symmetry and Conservation Laws 

 

 

Symmetry and conservation laws are closely connected.  Conservation laws are 

results of symmetries in the physical system.  One can separate various symmetries 

into two categories: 

 

a)  Space-time symmetries including space translation, time translation, 

rotation, Lorentz transformation, space inversion, time-reversal, etc. 

 

b)  Other symmetries not related to space-time, such as isospin, permutation 

symmetry, charge-conjugation, gauge invariance, etc.   These can be 

considered as ‘internal’ symmetries. 

 

We first consider examples of the space-time symmetries.  Suppose we describe a 

physical system with two different frames of reference S and S′.  S and S′ are 

related by 

    ,  ,  ,  ,  ,  ,  t x y z t x y z     

 

The transformation can be specified by the number of parameters it contains.  For 

example, a time translation t → t′ = t + τ is specified by a single parameter τ.  

Space translation, a    , is specified by three parameters (ax, ay, az).  Rotation 

(reorientation) of the coordinate system is also represented by three parameters. 

 

In general, these transformations form families or groups of transformation, and 

they have properties of a group.  We recall the properties of a group: 

 

1)  A law of combination, usually called multiplication, is defined such that 

 

 If ,  ,  then a G b G ab G    

 

2)  There exists an identity element e G .  For all a in G, ea = ae = a 

 

3)  For every a G , there exists 1a G   such that  

 

 a
-1

a = aa
-1

 = e 
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4)  The law of combination is associative 

 

 (ab)c = a(bc) 

 

The simplest group consists of one element e with the multiplication law ee = e. 

 

The next simplest group consists of two elements e, a with a law of multiplication 

 

 ee = e, ea = ae = a, aa = e 

 

These groups are called Abelian groups, since all group elements commute. 

 

The smallest non-Abelian group is the group of permutation of three objects: 

 

 e = (1 2 3)     a = (2 1 3)     b = (1 3 2) 

 c = (3 2 1)     d = (3 1 2)     e = (2 3 1) 

 note:  ab = (3 1 2) while ba = (2 3 1) 

 ab ≠ ba 

 

The permutation group of n objects is called the symmetric group of degree n:  Sn 

 

Note that S2 consists of two elements:   e = (1 2), a = (2 1),      

and it has the multiplication law e
2
 = e, a

2
 = e, ae = ea = a, just like the simple 

Abelian group of two elements mentioned earlier. 

 

Now consider the space translation 

 

 ,  r r a r r b       

 

a)  Sequential r r r    transformation gives  r r a b    , which is 

also a space translation. 

 

b)  0a   is the identity transformation. 

 

c)   
1

a a

   is clearly the inverse transformation. 

 

d)  Finally,    a b c a b c     .  Hence, the transformation is 

associative. 
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a) through d) show that space translation forms a group. 

 

Lorentz transformation also forms a group. 

 

 

Recall that Lorentz transformation is given as 

 

 
3

0

x x x    

 
 

      

where 

    0 1 2 3,  ,  ,  ,  ,  ,  x x x x x ct x y z    

 

Lorentz transformation leaves x
2
 invariant: 

 

 2 2 2 2 2 2x x x c t x y z

      

 

 

1 0 0 0

0 1 0 0
          

0 0 1 0

0 0 0 1

x g x g g 

  

 
 


   
 
 

 

 

 

 2x x x x g x x g x      

    
          

 

but, 2x x g x 

  

 

and Lorentz transformation leaves x
2
 invariant:  

 

 2 2x x g g 

   
      

or 

  T g g




  
    

 

Hence T g g    defines Lorentz transformation 
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To show that Lorentz transformations form a group: 

 

a)  Let  1 1 2 2          T Tg g g g       

then  3 2 1    

is also a Lorentz transformation. 

 
   3 3 2 1 2 1

1 2 2 1 1 1           

TT

T T T

g g

g g g

      

        
 

 3 3

T g g    

showing that, if 
1 , 2  are Lorentz transformations, the 

3 2 1    is also a 

Lorentz transformation. 

 

b)  Identity element is clearly 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
  
 
 
 

 

 

c)  First we show that for any 1 , there exists an inverse 1

1

 . 

 

 

   

       

      

1 1 1 1

1 1 1 1

2

1

           det det

det det det det

                    det det det

T T

T T

g g g g

g g

g g

     

    

  

 

 

Hence, 1det 1    

 

and 1  has an inverse 1

1

 . 

 

We also need to show    1 1

1 1

T

g g     

 

 

   

   

1 1

1 1 1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

T T

T T
T

T T

g g g g

g g

g g g

 

  

  

       

     

      
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Therefore  1 1

1 1

T

g g     

 

d)      1 2 3 1 2 3       

 

as a result of matrix multiplication definition. 

 

If S and S′ are equally valid frames of reference for formulating the laws describing 

the behavior of a system, then S and S′ are related by a ‘symmetry transformation’.  

In S′, the wave function described in system S as ψ(x) now becomes ψ′(x′).  ψ′(x′) 

has the same value as ψ(x). 

 

       1x x f x        

 

where x′ = f(x) signifies the coordinate transformation. 

 

The above equation can be re-expressed as a function of x, namely 

 

       1x f x U x      

 

where U is an operator which depends on the coordinate transformation (x′ = f(x)). 

 

The requirement that the norm    is preserved in the transformation implies 

 

 U U U U          

 

Hence, U
+
U = 1, U

+
 = U

-1
 and U is a unitary operator.  However, U is not a 

Hermitian operator and is not necessarily an observable. 

 

However, if the transformation can be built up from an infinitesimal transformation 

 

 1U i G   
 

where δα is an infinitesimal real number.  Then 

 

 U
+
U = 1   G – G

+
 = 0          G = G

+
 

 

G is Hermitian, and an observable. 
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For a symmetry transformation which leaves the Hamiltonian invariant 

 

 H H U HU H               

and 

 U
+
HU = H          U

-1
HU = H 

 [H, U] = 0 

 

U is a constant of motion, and similarly for the generator G.  Therefore, G is a 

conserved observable. 

 

Note that for each parameter α, one can obtain the corresponding generator Gα.  

Therefore, for a transformation involving n parameters, there are n corresponding 

generators and conserved observables. 

 

For discrete symmetry such as parity, there is no infinitesimal transformation, and 

hence no corresponding conserved generator.  However, the unitary operator for 

parity satisfies 

 2 1pU   

 

which follows from the fact that if the parity operation is applied twice, one obtains 

the identity transformation.  Since Up is also unitary 

 

 1p pU U   

 

it follows that  p pU U   

 

and in this case, the operator Up is itself Hermitian and can be interpreted as an 

observable. 

 

As an example, we consider time translation 

 

 t → t′ = t + τ 

 

Time translation invariance implies that the description of a system is independent 

of the choice of zero from which time is measured. 
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      1( )U t f t t          

 

  1U i G    

 

      U t t t
t




    


   


 

 

but             1U t i G t t i G t          

 

Hence iG
t





 


 

 

 G i H
t


 


 

 

H, the Hamiltonian, is the conserved generator for time translation. 

 

Similarly, one can show that P i   is the conserved operator for space translation 

(3 conserved generators – Px, Py, Pz – for a 3-parameter transformation). 

 

Finally, J  is the conserved operator for space rotation with three conserved 

generators, , ,x y zJ J J . 

 

We now discuss isospin conservation as an important example of unitary 

symmetry. 

 

Isospin Conservation in Strong Interaction 

 

In 1932, right after the discovery of the neutron, Heisenberg suggested that the 

similarity between proton and neutron mass implies that proton and neutron 

correspond to two degenerate states of strong interaction: 

 

 
p p

n n

H E

H E

 

 




 

 

 (note that mass (n) = 939.56 MeV and mass (p) = 938.27 MeV) 
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This degeneracy reminds us of the two-fold degeneracy of the spin-½ system for  

sz = +½, sz = -½, and we describe proton and neutron as two different states of the 

“nucleon”, one with ‘isospin’ up and the other with isospin down. 

 

 

11 1
,

02 2

01 1
,

12 2

p

n

 
   

 

 
    

 

 

 

A ‘nucleon’ state can be expressed as 

 

 
1 0

0 1

p

p n

n


 



     
      

    
 

 

and the transformation  

 

 
p p p n

n n p n

   

   

  

  
 

 

would represent an equivalent state as far as strong interaction is concerned. 

 

 
p p p

n n n

U
   

   

      
              

 

 

The matrix U must be unitary to preserve the norm.  Also, this implies 
2

det  1U  . 

 

Choosing det U = +1, the 2 x 2 unitary matrices form the SU(2) group.  There are 

2
2
 – 1 = 3 independent parameters. 

 

For an infinitesimal transformation U = 1 + iξ, where ξ is a 2 x 2 matrix whose 

elements are all small quantities.  det U = 1 now implies Tr ξ = 0 and the condition 

that U be unitary, (1 + iξ)(1-iξ
+
) = 1, implies ξ = ξ

+
. 
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Thus ξ is a 2 x 2 traceless Hermitian matrix.  It can be expressed as 

 

  1 2 32          ,  ,           

 
1 2 3

0 1 0 1 0
                    

1 0 0 0 1

i

i
  

     
       

     
 

 ,
2 2 2

ji k
ijki

 


         
 

 

A finite transformation can be built from the infinitesimal transformation 

repeatedly, and one obtains 

 

  exp 2U i   

 

The invariance of the Hamiltonian H in SU(2) transformation leads to [H, U] = 0 

and [H,  ] = 0.  The eigenvalues of   are constants of the motion. 

 

Consider states of several nucleons, the total isospin operators 

 

 1 2

1 1 1
.....

2 2 2
AT       

 

also commute with the Hamiltonian.  Thus the eigenvalues of the T  operators are 

constant of the motion.  Energy levels of nuclei should be characterized by 

eigenvalues of T
2
 and T3.  Isospin should be a good quantum number.  For each T, 

there are 2T + 1 ‘degenerate’ states. 

 

There are abundant examples for isospin conservation in nuclear physics.  As 

shown in the figure below, the pairs of ‘mirror nuclei’ 7 7 11 11

3 4 5 6Li Be and B C  have 

very similar binding energies for ground state as well as the excited states, after 

differences in Coulomb interaction (which does not conserve isospin) are corrected 

for.  Similar isospin triplets and isospin quartets are observed for 18 18 18

8 9 10O/ F/ Ne  

system and for 21 21 21 21

9 10 11 12F/ Ne/ Na / Mg . 
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 (a)  (Isospin    Mirror nuclei 

 doublet)    pair 

 

 A = 7    A = 11 

 

 

 Mirror nuclei 

 N Z

Z NA A  

 

 

 (b)   A = 18   (c)   A = 21 

 

 

Isospin 

triplet 

(I = 1)  

 

 Isospin 

 quartet 

 ( I = 3/2) 

 

 

 

 

 

 Mirror nuclei pair    Mirror nuclei pair 

 

 

 

Isospin conservation also imposes important constraints on strong interaction 

processes.  Some examples follow: 

 

a)  Consider the reaction d + d → 
4
He + π

o
 

 

The isospins of deuteron and 
4
He are both zero, while the isospin of π

o
 is 1.  The 

initial state d + d can only have total isospin 0, while the final state has total 

isospin 1.  Therefore, this reaction violates isospin conservation and can proceed 
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only via electromagnetic interaction. An extensive effort to measure the cross-

section of this reaction led to a determination of 0.8 pb/sr as an upper limit (using 

800 MeV beam).  Very recently, however, experimenters at Indiana University 

claimed a successful detection of this reaction. 

 

 

b)  The 0 0J  


    was known to occur with a branching ratio of ~ 20% 

(meaning ~ 20% of all ψ′ decays end up in this channel).  In contrast, 
0J 


   has a much smaller branching ratio of 0.1%.  Since J


 and ψ′ are 

cc  bound states with isospin = 0, the 0J 


   decay violates isospin 

conservation.  This explains why this decay mode is much inhibited compared with 

the 0 0J  


    mode, which does not violate isospin conservation. 

 

c)  Consider the reactions 

 

 a:  π
+
p → π

+
p    (elastic) 

 b:  π
-
p → π

-
p    (elastic) 

 c:  π
-
p → π

0
n  (charge-exchange) 

 

In these strong interactions, isospin is conserved.  Now, consider the isospins of 

the following system: 

 

 3 31 1: 1,1 , ,
2 2 2 2

p    

 π
+
    p    π

+
p    isospin 

 

where 1,1  signifies , zI I  

 

 

0

1 231 1 1 1 1: 1, 1 , , ,
2 2 2 2 2 23 3

2 131 1 1 1 1: 1,0 , , ,
2 2 2 2 2 23 3

p

n





     

    
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Now the cross-section is proportional to 

2

I

I

M , namely 

2

~ I

I

M   

 

where 

 
   

   

1
2

3
2

1 1
2 2

3 3
2 2

f i

f i

M I H I

M I H I

 

 

  

  

 

 

we obtain 

  

2 2 2

3 3 1 3 1
2 22 2 2

3 1
22

1 3
2 2

1 2
: : : 2 :

9 9

If  , then : : 9 :1: 2

If  , then : : 0 : 2 :1

a b c

a b c

a b c

M M M M M

M M

M M

  

  

  

  





 

 

d)  As another example similar to c), we consider the following reactions: 

 

 0  and k p k n          

 

Λ has isospin 0, and π + Λ can only have isospin = 1.  k p   can couple to I = 0 

and I = 1, since k   has I = ½, Iz = -½ and p has I = ½, Iz = ½ .  

  

  
11 1 1 1, , 1,0 0,0

2 2 2 2 2
    

 

Similarly k n   couples to I = 1 only  

 

 1 1 1 1, , 1, 1
2 2 2 2
     

One therefore has  

    0 1
2

k p k n             

 

 

 

e)  In addition to the (p, n) isospin doublet, there are many other examples of 

isospin multiplets for mesons and baryons: 
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3
2

I   
    0    

(quark content) (uuu) (uud) (udd) (ddd) 

Iz 3
2

 1
2

 1
2

  3
2

  

mass 1230.8 MeV 1231.6 1233.5  

 

 

I = 1   0    
(quark content) (uus) (uds) (dds) 

Iz 1 0 -1 

Mass 1189.4 MeV 1192.6 1197.4 

 

 

1
2

I   
0  1  

(quark content) (uss) (dss) 

Iz 1
2

  1
2

  

mass 1314.8 MeV 1322.3 MeV 

 

 

I = 1 (mesons)    0     
(quark content)  ud   uu dd   ud  

Iz +1 0 -1 

mass 139.57 MeV 134.98 MeV 139.57 MeV 

 

f)  Finally, remember that isospin is not conserved in electromagnetic interaction.  

Although p, n have very similar mass, their magnetic moments are very different: 

 

 1.91           2.79n N p N       

 

This difference reflects the electromagnetic origins for the magnetic moment. 
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Conservation of Charge, Baryon Number, and Other Additive Quantum Numbers 

 

Isospin symmetry is an example of SU(2) unitary symmetry.  Extension to SU(3) 

can describe strong interaction (quantum chromodynamics) which is based on the 

symmetry of 3 colors (red, blue, green). 

There are also important implications when the unitary symmetry is applied to the 

transformation in one dimension.  In the U(1) symmetry, the unitary transformation 

is 

 

 i Ge     

 

Note that there is no SU(1) symmetry, since the constraint of  det 1i Ge    would 

completely fix the transformation to a trivial ψ′ = ψ transformation. 

 

G is the generator of the U(1) transformation, and G is a conserved observable if 

the Hamiltonian H commutes with the U(1) transformation.  Therefore, the energy 

eigenstate can also be an eigenstate for the generator G: 

 

 Gψ = qψ          Hψ = Eψ 

 

The eigenvalue of G can be identified as the charge of a particle, for  example.  

Charge conservation is therefore a consequence of U(1) symmetry. 

 

Identical algebra can be adopted to describe other additive conservation laws such 

as baryons number conservation, lepton number conservation, strangeness 

conservation, etc.  These conservation laws are derived based on the assumption 

that [H, G] = 0.  Whether this is indeed true can only be tested by experiments.  

The charge conservation, however, is regarded as more robust compared with the 

other conservation laws (such as baryon number) since a dynamic theory, quantum 

electrodynamics, can be deduced based on the local gauge symmetry of U(1). 

 

Just like the isospin symmetry in SU(2), the charge conservation in U(1) gives rise 

to additive quantum numbers.  Consider a system consisting of n particles, the 

corresponding U(1) transformation is 

 

 
1 2

1 2( ..... )

..... n

n

i Gi G i G

i G G G

e e e

e

 

   

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Hence, G = G1 + G2 + . . . . . + Gn is a conserved observable. 

 

We now consider baryon number conservation.  This conservation law is 

motivated by the fact that all known reactions and decay processes involving 

baryons conserve baryon numbers.  In particular, the lightest baryon, proton, 

appears to be perfectly stable. 

 

We mentioned already that charge conservation is a result of a field 

(electromagnetic field) coupled to the electric charge.  Lee and Yang suggested in 

1955 that the apparent conservation of baryon numbers implies the existence of a 

long-range field coupled to baryon number (analogous to the case for charge 

conservation ↔ electromagnetic field).  In particular, the gravitational force 

between an object and the earth 

 

 earth
Gravity 2

GM M
F K

r
  

 

could contain an additional term sensitive to the total baryon number of the object 

 

 
  earth

Baryon 2

N N

B

M B M B
F K

r
  

 

To measure such a new form of force coupled to baryon number (the fifth force), 

one could compare the gravitational force of two different objects having the same 

mass, but different total number of baryons.  This is possible by selecting two 

objects made of different materials.  The difference in the nuclear binding energies 

would give different total baryon number for equal mass.  By a comparison of 

objects made of aluminum and platinum, it was found that 

 

 KB < 10
-9

 K 

 

Altough the standard model does not allow proton decay (none of the fermion-

fermion-boson coupling diagrams we introduced in Chapter 1 allows proton 

decay), explanation for a well-known phenomenon in cosmology, namely the 

matter-antimatter asymmetry, requires baryon number non-conservation (the 

Sakharov conditions). 

 

In Grand Unified Theories (GUT), such as SU(5), there exist “leptoquark” with 

mass  10
15

 GeV.  The leptoquark can couple to qq or lq. 
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A possible diagram for proton decay is 

 

 

  u    x    e
+
 

 p    u     d  

     π
0
 

d     d 

 

 

The most favorable decay channel in SU(5) is p → e
+
π

0
.  In supersymmetry GUT, 

the most favored decay channel is p k
 .  Note that in these decays both 

baryon number conservation and lepton number conservation are violated.  

However, B – L, the difference between baryon number and lepton number, is 

conserved. 

 

Conservation of strangeness is a broken symmetry only valid in strong and 

electromagnetic interactions.  This conservation law is a special case of flavor 

conservation in strong and electromagnetic interactions.  A related quantum 

number Y, called hypercharged, is defined as 

 

 Y = B + S     (B is the baryon number and S is the strangeness) 

 

It is called hypercharge due to the following relationship between charge and Y: 

 

 3

1

2
Q e I Y

 
  

 
 

 

One can also define a generalized hypercharge Y′ as 

 

 Y′ = B + S + C + t + b 

 

where c, b, t are the additive quantum number for charm, bottom, and top quarks.   
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We have 

 

 B S C t b I3 Y′ 
3

1
2

I Y   Q 

u 1
3

 0 0 0 0 1
2

  1
3

 2
3

 2
3

 

d 1
3

 0 0 0 0 1
2

  1
3

 1
3

  1
3

  

c 1
3

 0 +1 0 0 0 4
3

 2
3

 2
3

 

s 1
3

 -1 0 0 0 0 2
3

  1
3

  1
3

  

t 1
3

 0 0 +1 0 0 4
3

 2
3

 2
3

 

b 1
3

 0 0 0 -1 0 2
3

  1
3

  1
3

  

 

Note that the strangeness and bottom quantum numbers (s, b) are defined as -1 for 

the strange and bottom quarks, while c and t are +1 for the charm and top quarks.  

The above table shows that the relation 

 

 3

1

2
Q e I Y

 
  

 
 

 

holds for all quarks (and for all antiquarks, where all additive quantum numbers 

change sign). 

 

Note that charge conservation is valid for all types of interactions, while flavor (s, 

c, t, b) conservation only holds for strong and electromagnetic interactions.  

Furthermore, I3 is conserved in strong and electromagnetic interactions (since Q 

and Y′ are conserved).  For weak interaction, Y′ and I3 are not conserved. 

 

An example of I3 non-conservation can be seen in the following weak decays 

 

 k
+
 → π

+
 + π

0
          Λ → p + π

-
 

                                I3     +½     +1     0            0    +½   -1 
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Discrete Symmetry and Multiplicative Quantum Numbers 

 

Space inversion (P), charge-conjugation (C), and time-reversal (T) are examples of 

discrete symmetry transformation which cannot be built up by infinitesimal 

transformation.  As discussed earlier, there is no Hermitian generator for such 

discrete transformation.  However, for P and C the transformation Up and Uc are 

Hermitian and if the Hamiltonian commutes with Up (Uc), the energy eigenstates 

could also be eigenstates of Up (Uc).  Since 2 21,  1p cU U  , the possible eigenvalues 

are +1 and -1. 

 

 
p pU        

 

The multiplicative nature of the quantum number can be understood by considering 

a wave function consisting of several parts 

 

 1 2..... n    

 

The corresponding parity transformation Up is 

 

 
      

     

1 21 2 ..... .....

       1 2 .....

p p p p n

p p p

U U U U n

n

  

   




 

 

Parity (P) 

 

The parity operation corresponds to a transformation 

 

 (x, y, z) → (-x, -y, -z) 

 

  z        x 

 

   y    y 

 

 

 x        z 

 

It is clear that a right-handed coordinate system is changed into a left-handed 

system.  Space-inversion is equivalent to mirror reflection followed by rotation, 

and space-inversion and mirror reflection are often treated interchangeably. 
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Consider a particle experiencing a central potential v(r) which only depends on 

r r .  The Schrödinger equation gives 

 

      
2

2

2
v r r E r

m
 

 
    
 

 

 

The eigenstate can be separated into the radial and angular parts 

 

      ,n mr R r Y    

 

The r r  can be expressed in spherical coordinates as 

 
                     r r            

 

Therefore, 

 

       

    

   

,

             1 ,

             1

p n m

n m

U r r R r Y

R r Y

r

     

 



    

 

 

 

 

For even , parity = +1 

For odd ,  parity = -1 

 

The transformations of various quantities under space inversion are as follows: 

 

 

   

   

 

momentum           ( ) angular momentum

spin                          electric field

magnetic field

p p L r p L

s s E E

B B

   

 



 

 

The transformation properties of  and E B  field under parity can be understood by 

requiring that the equation of motion for a charged particle 

 

 
2

2

1d
F m r e E v B

dt c

 
    

 
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be invariant under space inversions (both  and r v  charge sign, hence 

,  E E B B  ). 

 

What are the intrinsic parity of various hadrons (mesons and baryons), leptons, and 

gauge bosons? 

 

First consider mesons.  Since a meson consists of a quark and an antiquark, we 

have 

 parity (meson) = parity (q) x parity  q  x (-1)
L
 

 

where L is the orbital angular momentum between the quark (q) and antiquark  q . 

 

The intrinsic parity of quarks is defined as +1, and the antiquark’s parity is -1, 

opposite to that of the quark. 

 

Hence parity (meson) = (-1)
L+1

 

 

As will be discussed later, the lightest mesons are mostly L = 0  states (i.e. π, k, η, 

ρ, ω,  . . . ).  Therefore, these mesons have negative parity (  = -1). 

 

Mesons with L = 1 (a0, f0, b, h, etc.) have positive parity (  = +1). 

 

For baryons consisting of three quarks, we have 

 

 parity (baryon) = parity (q1)   parity (q2)   parity (q3)     1 21 1
L L

    

 

where L1 is the orbital angular momentum between q1 and q2, and L2 is the orbital 

angular momentum between q3 and the center-of-mass of q1q2: 

 

  L1 

 q1      q2 

     L2 

 

       q3 

 

For light baryons, such as p, n, Λ, Σ, Ξ, Ω, L1 = 0, L2 = 0 and  = +1.  Note that if 

the intrinsic parity of quarks were defined as negative, then these baryons would 

have    = -1.  For baryons with L1 + L2 = odd, their parity is negative. 
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The intrinsic parity of photon is negative.  Photon has spin = 1, and it exists in two 

states:   

 

 λ = +1 for positive helicity state (right-handed), or 

 λ = -1 for negative helicity state (left-handed) 

 

The wave function can be written as 

 

 

 

 

1

1

1

2

1

2

ipz

x y

ipz

x y

A e ie e

A e ie e









  

 

 

 

for photons moving along the z-axis.  Upon parity transformation, 1A  becomes 

1A  and vice versa. 

 

We now consider neutrinos.  It turns out that neutrinos are not eigenstates of parity.  

Upon parity transformation, a left-handed neutrino would become a right-handed 

neutrino.  Since right-handed neutrino is not found in nature (only right-handed 

antineutrino exists), neutrino is not a parity eigenstate. 

 

 

Tests of Parity Conservation 

 

a)  Atomic Physics 

 

In 1924, Laporte found the following peculiar phenomenon in atomic x-ray 

transitions in iron atoms.  The atomic levels can be separated into two groups, and 

photon transitions were only observed between two states belonging to the two 

different groups.  No transitions between states within the same group were 

observed.  In 1927, soon after the discovery of quantum mechanics, Wigner 

suggested that the ‘Laporte’s Rule’ is a consequence of parity conservation in 

atomic transitions. 

 

The probability for an atom to make a transition from a state ψa to a state ψb with 

the emission of electric dipole radiation is proportional to the square of the matrix 

element 
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 | |b ad   

 

where 
i

i

d er  is the electric dipole moment operator summed over all electrons.  

This matrix element is invariant under parity transformation if parity is conserved: 

 

 | | | | | |b a b b a a a b b ad d d            

 

where ηa, ηb are the parities of ψa and ψb. 

 

If ηaηb = +1, then  | | | | 0b a b ad d       

 

Hence, dipole transitions can only occur between states which have opposite 

parities, if parity is conserved. 

 

An interesting extension of the Laporte’s Rule concerns the static dipole moment 

of an atom, a nucleus, or other elementary particle.  In this case, ψa = ψb and ηaηb = 

+1.  Hence, electric dipole moment vanishes if parity is conserved. 

 

Since atomic physics is dominated by electromagnetic interaction, and since parity 

is conserved in electromagnetic interaction, it is not surprising that no significant 

parity violation has been observed in atomic physics.  As will be discussed later, 

the interference of electromagnetic and weak interaction does allow parity 

violation in atomic physics.  The effect is tiny, and could only be detected in very 

sensitive measurements. 

 

 

b)  Parity Violation Search in Strong Interaction 

 

Some examples of parity violation search in nuclear physics, where strong 

interaction dominates, include 

 

  
20

Ne(1
+
, Ex = 11.3MeV) → 

4
He(0

+
) + 

16
O(0

+
) 

 

This α-decay of an excited 
20

Ne 1
+
 state to 

16
O ground state violates parity.  

Conservation of angular momentum requires that L = 1 between 
4
He and 

16
O.  The 

total parity for 
4
He + 

16
O is therefore negative (due to the (-1)

L
 factor). 
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 d(1
+
) + 

4
He(0

+
) → 

6
Li (0

+
, Ex = 3.6 MeV) 

 

This reaction also violates parity, since angular momentum conservation dictates 

that the orbital angular momentum L between d and 
4
He be 1. 

 

Neither reaction has been observed experimentally, showing that parity is 

conserved in strong interaction. 

 

 

c)  Parity Violation in Weak Interaction 

 

 - The τ-θ puzzle 

 

Prior to 1956, the θ- and τ-mesons (not to confuse with the τ-lepton) were found to 

have the decay modes 

 

 

0

0 0      (and )

  

       

 

     

 

     
 

 

The masses and lifetimes of θ and τ were equal within experimental errors.  

Assuming θ, τ have spin = 0, the 0      decay requires that 0    has 

positive-parity (since 0    parity =      1 1 1 1
L

     , L = J = 0).  Similarly, 

one can show that τ
+
 has to have negative parity.  It was a great puzzle why two 

particles (θ, τ) have identical masses and lifetimes, but opposite intrinsic parities. 

 

 

 - The 
60

Co Experiment 

 

Lee and Yang suggested that the τ-θ puzzle could be resolved by parity non-

conservation in weak interaction.  Although there was plenty of evidence for the 

validity of parity conservation in electromagnetic (atomic) and strong (nuclear) 

interactions, Lee and Yang pointed out that there was no experimental evidence 

whatsoever for parity conservation in nuclear β-decays or other weak decays of 

mesons and hyperons. 

 

Wu, Ambler, Hayward, Hoppes and Hudson performed an experiment which 

conclusively demonstrated parity violation in nuclear β-decay.  They used 

polarized 
60

Co nuclei and measured electrons from the following decay: 
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 60 60Co Ni ee     

 

They found e
-
 prefers to be emitted in the direction opposite to the 

60
Co spin 

direction: 

 

 

 

 

 

 
60

Co        spin    
60

Co    spin 

 

 

 

 

 mirror    (not observed in nature) 

mirror 

 

 

 

 
60

Co        spin      (not observed in nature) 

 

 

 

 

 

 

From the above figure, it is clear that the mirror images give un-physical situations, 

where e
-
 prefers to be emitted in the direction along the 

60
Co spin direction 

(independent of how you place the mirror). 

 

 

Upon hearing the news on Wu’s experiment, Garwin, Lederman, and Weinrich 

carried out an elegant experiment confirming large parity violation effect in π
+
 and 

μ
+
 decays.  They found 1) μ

+
 in the π

+
 → μ

+
 + νμ decay is polarized, i.e. the 

expectation value 0s p
  ; and 2) e

+
 emitted in the ee        is not 

isotropic and the preferred direction is correlated with the spin orientation of μ
+
. 
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 μ
+
     μ

+
 

 

 

 π
+
     π

+
    (not observed in nature) 

 

 

 νμ     νμ 

  

 mirror 

 

 

Note that the asymmetry in the angle of emission of e in 60 60Co Ni ee     

decay and the 
ee        both reflect the existence of a non-vanishing 

expectation value for 

 es p  

 

where s  is the spin of 
60

Co (or μ
+
) and ep  is the momentum of e.  Since es p  

changes sign under parity transformation, it cannot have non-zero expectation 

value if parity is conserved.  Similarly, in the π
+
 → μ

+
 + νμ decay, the fact that μ

+
 is 

longitudinally polarized means that the expectation value for 

 

 s p
    

 

is not zero.  Again s p
    changes sign under parity and must vanish if parity is 

conserved. 

 

Quantities such as s p  are called pseudoscalars.  They behave like a scalar under 

rotation, but changes sign under parity transformation.  Quantities such as L  and s  

are axial vectors, which behave like a vector under rotation, but do not change sign 

under parity. 

 

We can revisit the τ-θ puzzle and observe that the  

 

 k
+
 → π

+
 + π

0
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decay manifestly violates parity.  Since k
+
, π

+
, π

0
 all have J

π
 (J is spin, π is parity) = 

0 , the parity for π
+
 + π

0
 is (-1) x (-1) x (-1)

L
.  Conservation of angular momentum 

requires L = 0.  Hence, the parity for π
+
 + π

0
 is +1, opposite to the parity of the 

initial particle k
+
. 

 

 

Charge-Conjugation 

 

The charge-conjugation transformation, Uc, reverses the sign of additive quantum 

numbers.  Other quantum number related to space-time (energy, momentum, spin) 

remain the same under Uc. 

 

    ,  ,  ,  ,  ,  ,  cU Q B S L Q B S L       

 

 (Q, B, S, L are charge, baryon number, strangeness, lepton number) 

 

Since 2 1cU  , the eigenvalues for Uc are +1, -1.  From the above relation, it is clear 

that only particles with Q = 0, B = 0, S = 0, L = 0 could be eigenstates of the c-

parity.  Particles such as π
0
, ρ

0
, γ have definite intrinsic c-parity. 

 

Although very few particles are themselves eigenstates of c, it is possible to form 

c-parity eigenstates by considering systems consisting of several particles.  For 

example, (π
+
π

-
),  ,  p p , (π

+
, π

-
, π

0
) are eigenstates of c-parity. 

 

What is the c-parity of a system consisting of a boson and an antiboson (such as 

π
+
π

-
)? 

 

 ψ = ψ (space) ψ (spin) ψ (intrinsic) 

 

A particle-antiparticle exchange is identical to interchanging the two particles.  Let 

L, S be the orbital angular momentum and the total spin of the two bosons.  Upon 

particle-antiparticle interchange, one obtains a factor (-1)
L
 from ψ (space), (-1)

S
 

from ψ (spin) and the c-parity of boson-antiboson pair is 

 

 (-1)
L+S

 

 

For a fermion-antifermion pair (like pp  or e
+
e

-
), one obtains (-1)

L
 from ψ (space), 

(-1)
S+1

 from ψ (spin) and (-1) from ψ (intrinsic).  The overall c-parity is again        

(-1)
L+S

. 
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The charge parity, ηc, for neutral mesons which have L = 0, S = 0, is therefore +1 

(π
0
, η

0
).  For ρ

0
,   mesons which have L = 0, S = 1, ηc is -1. 

 

The photon has ηc = -1 since all components of the electromagnetic field change 

sign under charge conjugation.  A system of n photons has ηc = (-1)
n
. 

 

e
+
e

-
 can form bound states called positronium.  The shortest-lived state of 

positronium is in a 
1
So state (S = 0, L = 0, J = 0) which can decay into 2γ (since ηc 

= (-1)
L+S

 = +1) 

 

 e
+
e

-
 (

1
So) → 2γ 

 

Note that c-parity conservation dictates that e
+
e

-
 → 2γ has to occur from a ηc = +1 

positronium state.  Similarly, 

 

 e
+
e

-
 (

3
S1) → 3γ 

 

Note that the positronium 
1
So state is analogous to π

0
, which consists of a qq  pair 

in 
1
So state.  Indeed, the dominant decay mode for π

0
 is 

 

 π
0
 → 2γ 

 

while the π
0
 → 3γ decay mode, which violates c-parity, has never been observed. 

 

It can be readily verified that c-parity conservation (in strong and electromagnetic 

interactions) forbid the following decays: 

 

 η → 3γ 

 η → π
0
γ 

 ρ → π
0
π

0
π

0
 

 ρ → ηπ
0
 

 

 

Tests of c-invariance 

 

A direct test of c-invariance can be made by comparing the cross-sections, energy 

distribution for a reaction 

 



P570  28 

 a + b → c + d + e + . . .  

 

with the charge conjugation reaction 

 

 ....a b c d e      
 

An example is the 0pp      reaction.  In the center-of-mass frame: 

 

   π
+
      π

-
 

     π – θ 

        θ 

 p      p     p    p  

    charge 

 π
-
   π

0
     conjugation π

+
   π

0
 

 

 

Invariance under charge conjugation requires 

 

    
d d

d d 

 
    

 
 

 

i.e. the cross-section for π
+
 to be produced at an angle θ (with respect to the p  

direction) is identical to the cross-section for π
-
 to be produced at the angle π – θ.  

In a similar fashion, one can readily show that 

 

    0 0

d d

d d 

 
   

 
 

 

In other words, the π
0
 angular distribution in the center-of-mass frame should be 

symmetric about θ = 90
o
. 

 

No evidence for c-parity violation was observed in 0pp      reaction.  

Extensive study of a similar process 

 

 η → π
+
π

-
π

0
 

 

also did not find any evidence for c-violation. 
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c-violation in Weak Interaction 

 

Parity violation in weak interaction also leads to c-violation.  For example, 

neutrino is left-handed and antineutrino is right-handed.  This fact alone shows that 

charge-conjugation symmetry is violated, since the charge-conjugation operation 

on left-handed neutrino would lead to a left-handed antineutrino. 

 

Another example is provided by the charged pion decay.  π
+
 → μ

+
 + νμ decay 

produces a left-handed νμ and μ
+
, while       produces right-handed   

and μ
-
 (the double-arrow indicates the spin direction): 

 

 μ
+
    π

+
    νμ     μ

-
    π

-
      

 

 

 

A charge-conjugation operation on π
+
 → μ

+
 + νμ would lead to 

 

 μ
-
    π

-
      

 

 

which is not observed in nature. 

 

Therefore, the π
+
 → μ

+
 + νμ decay violates c-parity.  It is interesting to note that the 

CP operation, which combines the c and p operations, is invariant.  The combined 

CP operation on π
+
 → μ

+
 + νμ would yield 

 

 μ
-
    π

-
      

 

 

 

which is observed in nature. 

 

 

CP-violation 

 

After the discovery of parity violation in 1957, it was immediately recognized that 

c-parity is also violated in weak interaction.  However, it was generally believed 
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that the combined operation, CP, was a valid symmetry.  In 1964, CP-violation was 

discovered in neutral k-meson decays.  The physics origin of CP violation is still 

poorly understood, and it remains a very active area of research in particle and 

nuclear physics. 

 

 


