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Abstract. In this tutorial article we provide a discussion of squeezed states of light from an 
elementary point of view. An  outline of the topics considered is provided in the contents 
list below. Following the  presentation of topics 1-3, which are of a  general nature, we 
discuss two kinds of nonclassical light: quadrature-squeezed light (topics 4-6) and  photon- 
number-squeezed light (topics 7-9). In the last part of the article we provide a listing of 
early nonclassical light experiments and consider a number of applications (and  potential 
applications) of squeezed  light. Finally, we provide a survey of the available general 
literature. 
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1. Review of uncertainties in light 

Consider  monochromatic light from  a classical point of view. The sinusoidal  electric 

E(t)  = i [a ( t )  + a*( t ) ]  . (1) 

These  quantities  are  phasors  that  rotate in the complex  plane as  time  progresses  (see 
figure 1). A  phasor may be described in terms of a  complex  amplitude a and a 
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time-dependent  factor e""'. The complex  amplitude  can  be  represented as U = x + ip 
where x andp  are  real. By inverting  these  relationships, the  quadrature  components x 
and p are expressible in terms of a and a* so that  the  electric field can  be  written  as 

E ( t )  = x cos u t  + p sin o t  ( 2 )  

where 

x = (a + a*)/2 

and 

p = (a - a*)/(2i). 

X 

Figure 1. Phasor  and  quadrature-component  representations of the  electric field for 
monochromatic classical light. 

The  components x and p are called quadrature  components because the cosine  and 
the sine  differ in phase by 90 degrees, i.e. they are in quadrature.  The  energy in a 
classical mode such  as  this is proportional  to  the  square of the  electric  field,  and 
therefore  to /ai2, which is of course  constant  and  unrestricted in its  value. 

Assume  that  at t = 0 the  phasor a(t)  takes  on  the initial  position  shown by the 
broken line a in figure 2. It can  then  be  represented  either in terms of its magnitude 
and initial  phase 4, or in terms of its  initial x and p projections. The phasor  rotates 
with an  angular velocity W, which is the  angular  frequency of the  optical  field.  Its 
projection  on  the x-axis varies  sinusoidally with time  and  has a peak value iai. There 
are  many possible  choices of orthogonal  coordinate  axes,  e.g. x '  and p' as  shown in 
figure 2. 

Single-mode  monochromatic light can  be  represented in an analogous way when 
viewed  from  a  quantum-mechanical  point of view. The quantities E( t ) ,  a(t) ,  a*(t), x,  
andp in figures l and 2 must,  however,  be  converted  into  operators in a Hilbert  space. 
The laws of quantum mechanics  provide that  the  annihilation  operator a ( [ ) ,  and its 
hermitian  conjugate  the  creation  operator a t ( t ) ,  obey  the boson  commutation  relation 

[a( t ) ,   a t ( t ) ]  = a(t)a-t(t) - ai( t )a( t )  = 1 . 
(5 )  

This, in turn,  means  that x and p do not commute with each  other.  Rather, they 
obey  the  commutator 
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Thus,  the  quadrature  components of the field obey  a  Heisenberg  uncertainty  relation 
of the  form 

where U represents  the  standard deviation of the  subscripted  quantity.  Unlike  the 
situation  for a classical mode,  these  components  cannot  be simultaneously  specified 
with  unlimited  accuracy.  The  average  energy in the  quantum  mode is hw((n) + B )  
where hw is the  energy  per  photon  and n = a ia  is the  photon-number  operator.  The 
additional  zero-point  energy of the field, tho,  represents  vacuum  fluctuations. 
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Figure 2. For monochromatic classical light,  the selection of different  points  for t = 0 
provides different values for x ,  p and 4, 
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UNCERTAINTY 

Figure 3. Cartesian and polar-coordinate  representations of the  uncertainty area associ- 
ated with a quantum-mechanical  field. 

The uncertainties  associated with each of the  quadrature  components of this 
quantum-mechanical field are illustrated in figure 3. The  mean values ( x )  and (p), and 
their  standard  deviations U, and up? are shown in the  upper  portion of the  figure. 
There is an  area of uncertainty  (dotted region)  indicating that  the  simple classical 
description of a  phasor  without  randomness  does  not  apply. A state of minimum 
uncertainty  obeys  the equality uxup = a. In  the lower portion of figure 3, the 
uncertainty of a is represented in polar  coordinates.  It  has  an  amplitude  standard 
deviation uta/, a  phase-angle  uncertainty U+, and  a  mean  magnitude I(a)/. For a 
sufficiently small area,  the  photon-number  uncertainty U,, can be  written in terms of 
ulQl by using the  approximate  relationship n = lal'. Forming  the differential 

An = 2/ajAlal (8) 
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gives rise to 

where a,, = An. The azimuthal  uncertainty a+ can  be  expressed  as  the  ratio of the 
arc-length  uncertainty to (n)’l2. Although  these  relationships  are  not  entirely  accurate, 
they  nevertheless  provide  a  rough  guide to the  interrelations of the various  uncertain- 
ties. 

It is clear that  both Cartesian and  polar  coordinates  provide  suitable  representa- 
tions  for  describing  the  uncertainties  associated with the  quantum  field.  The  former 
turns  out  to  be useful for  the analysis of quadrature-squeezed  light,  and  the  latter  for 
photon-number-squeezed  light,  as will soon  become  evident. 

2. Examples of states of light 

Two  examples of states of light are described in this  section. The first is the  coherent 
state [l], which is generated by an ideal  amplitude-stabilised gas laser  operated well 
above  its  threshold of oscillation. As illustrated in the  upper  portion of figure 4, the 
coherent  state is represented by a  phasor of mean  magnitude I(a)/ = a and a surround- 
ing  circular area  of  uncertainty.  The probability  density  Pr(x) of finding the value x is 
gaussian, with mean ( x )  and  standard  deviation ax = 1. Its  quadrature  components 
behave symmetrically so that axup = f ;  the  coherent  state is a  minimum-uncertainty 
state.  The  polar-coordinate  representation is provided in the lower  portion of figure 4. 
For a coherent  state,  the  photon-number variance un2 is precisely  equal to  the 
photon-number  mean, in accordance with the Poisson distribution.  Using  the  express- 
ions  for a,, and a+ of the previous  section, with UI,J = $ and  an  azimuthal  arc-length 
uncertainty of 1, leads to  the so-called semiclassical number-phase  equality 

ana+ = 1 . 

The second  example is the vacuum state shown in figure 5 .  It,  too, is a  coherent 
state  but with a = 0 so that ( x )  = (p) = 0. It is a  minimum-uncertainty  state  obeying 
axup = f. The vacuum state is also  a  number state with n = 0, as will be discussed 
subsequently.  Although its mean  photon  number (n )  is zero, a  vacuum-state mode  has 
a  zero-point  energy 1ho and  therefore  exhibits  residual  fluctuations in x ,  p ,  and E(t) .  
The vacuum,  though  devoid of photons, is noisy. 

The electric-field  time  dependence  for the  coherent  state is illustrated in figure 6. 
Unlike  the classical electric field E(t),  which has  a sharp value at  each  instant of time 
(see figure 2 ) ,  the  quantum electric field is always uncertain.  This is because a is an 
operator  rather  than a  complex number. In principle, the gaussian tails of the  cohe- 
rent-state  quadrature  components allow the  amplitude of the  coherent field to assume 
an  arbitrarily  large  value at any  instant.  However,  it will usually be  found within one 
standard  deviation (a) of the  mean. Values of a lying in the  uncertainty circle (black 
circle in upper-right  quadrant of figure 6 )  trace  out  the &a limits of E(t) (lower-right 
quadrant of figure 6 ) ,  as  the circle rotates with angular velocity W. In  the  upper-  and 
lower-left quadrants of figure 6 the mechanics of tracing out E([)  from  the  uncertainty 
circle is shown  for  four  arbitrarily  chosen  values of a in the  uncertainty  circle.  Each 
value of IY. traces  out a  sinusoidal  time  function, of appropriate  magnitude  and  phase, 
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Figure 4. Quadrature-component  and  number-phase  uncertainties for the  coherent  state. 
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Figure 5. Quadrature-component  uncertainties for the vacuum state. 
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Figure 6. Electric-field time dependence for the coherent state. 

as  determined by its real  part  (projection  on  the x-axis). The collection of all points 
within the  uncertainty circle  produces E(t)  as shown in the lower-right quadrant.  For 
the  coherent  state,  the noise about  the  mean of the  electric field is independent of its 
phase. 

The behaviour of the electric-field  time dependence  for  the vacuum state is 
obtained in the  same  way, as  illustrated in figure 7.  The sinusoidal  time  functions 
traced  out by  six possible  values of a falling within the  uncertainty circle are  shown in 
the  upper-  and lower-left quadrants.  The collection of all  points  within  the  circle 
traces  out  the +a limits of E( t ) .  Although it is noisy, the  mean of the  vacuum-state 
field is, of course,  zero.  Again,  the noise is phase-independent. 
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Figure 7. Electric-field time dependence for the vacuum state. 

3. Definitions  of  squeezed-state light 

The  coherent and vacuum states described above are not squeezed. We now consider 
two kinds of squeezed states. 

A state is quadruture-squeezed, by definition, if any of its quadratures has a 
standard deviation that falls  below the coherent-state (or vacuum-state) value of i 
[2-lo]. The uncertainty in one  quadrature may  be squeezed below 1, but this is 
achievable only at the expense of stretching the uncertainty in the  other  quadrature  to 
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Figure 8.  Definitions of squeezed-state light: ( a )  quadrature squeezed, (b )  photon-number 
squeezed. 

a  value  above 1, as  illustrated in the  upper  portion of figure 8. The  product must  have 
a  value of f or  greater, as specified by the  Heisenberg  uncertainty principle. A 
quadrature-squeezed  state  may,  but  need  not,  be  a  minimum-uncertainty  state. 

In  contrast, a state is defined to  be photon-number-squeezed if its photon-number 
uncertainty un falls below that of the  coherent  state, (n)l" [ll-151. The U,, is related to 
the radial  uncertainty ulnl (see  figure 3). The uncertainty in n may be  squeezed  below 
(n)"2, but only at  the  expense of stretching  the  phase  uncertainty U+, as  illustrated in 
the lower  portion of figure 8. Photon-number-squeezed light goes by a number of 
other  names;  these include  sub-Poisson  light,  quiet  light,  silent  light,  and  amplitude- 
squeezed light (which is also used to refer to a  particular  kind of quadrature-squeezed 
light).  It is often  referred  to as sub-Poisson light because its standard deviation falls 
below  (sub) that of the Poisson distribution that  characterises  the  coherent  state. A 
photon-number-squeezed  state  need  not  obey  the  minimum-uncertainty  number- 
phase  equality unuQ = 1, although  states  that  do  obey  this  relation  have  been  studied 
[ W .  

4. Examples of quadrature-squeezed light 

From a  mathematical  point of view,  a field in a  minimum  uncertainty  state  can  be 
quadrature  squeezed by multiplying its  x-component by the  factor e" and its p -  
component by the  factor e'. The  quantity r is called the  'squeeze  parameter'.  It is 
convenient to include  a  phase  factor eis in one of the  quadratures so that 
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The  net result of this operation is to squeeze  the  x-component  uncertainty U, down  to 
e"u, and  simultaneously to stretch  the  p-component  uncertainty U, up  to e'u,. As 
illustrated in figure 9, the vacuum state  then becomes the  squeezed vacuum state. 
Both  are  minimum-uncertainty  states.  Note,  however,  that  the  squeezed  vacuum  state 
has  a  mean  photon  number 

(n)  = sinh2 r > 0 (12) 

so that it no longer  truly  represents  a  vacuum. Furthermore its photon-number 
statistics are  super-Poisson; its variance 

U: = 2((n) + ( n y )  (13) 

is twice that of the Bose-Einstein (geometric)  distribution. 

P + P 

Figure 9. Comparison of quadrature-component  uncertainties for the vacuum and 
squeezed vacuum states: ( a )  vacuum state, ( b )  squeezed vacuum state. 

Figure 10. Comparison of quadrature-component  uncertainties  for  the  coherent  and 
squeezed  coherent  states: ( a )  coherent  state, (b)  squeezed  coherent  state. 
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The  coherent  state can  be similarly transformed  into  the  squeezed  coherent  state, 
as shown in figure  10.  This  minimum-uncertainty state goes by a number of other 
names [2], including the  'two-photon  coherent  state',  the 'wave-packet  state',  and the 
'new coherent  state'.  The angle 8 between the  major axis of the ellipse  and the  phasor 
a = (a)  is controlled by changing the angle 6 relative to  the angle of a. The mean 
photon  number 

(n )  = la)* + sinh2 r (14) 

has  both a coherent  contribution (ai2 and  a  squeeze  contribution  sinh2 r .  Its variance is 

( ~ , 2  = (n)(e2r cos2 e + e-2r sin2 e), /ay/' >> eZr , (15) 

The squeezed  coherent  state  can exhibit either  super-Poisson or sub-Poisson photon 
statistics,  depending on the angle 8, as  shown in figure 11 for  the  example r = 4. The 
variance is largest  when 8 is an  even  integer multiple of d 2 .  Referring  back to figure 
10,  this  corresponds  to  the  major axis of the ellipse aligning with the  phasor.  This 
lends  a  large  uncertainty  to  the  radial  direction,  thereby giving rise to a  large photon- 
number  variance. In contrast,  the  photon-number variance is smallest  when e is an 
odd  integer multiple of d 2 .  In this  case  the  minor axis of the ellipse  lends  a  small 
uncertainty to  the radial  direction  and  thereby to  the  photon-number  variance. 

The electric-field  time  dependences  for  the  squeezed  vacuum state  and  the 
squeezed  coherent  state  are  shown in figures 12 and  13,  respectively.  Diagrams of this 
kind  were  first  presented by Caves [17]. In these  illustrations the  p-components  are 
taken  to  be  squeezed,  rather  than  the  x-components, as in figures 9 and 10. The 
former is sometimes  referred  to  as  phase  squeezing  and  the  latter  as  amplitude 
squeezing.  The electric-field  uncertainty is seen to fall to  a  minimum  periodically; the 
noise is reduced  below  the  coherent-state value at  certain  preferred values of  the 

0 O L "  
0 n 2n 

Figure 11. Dependence of the  squeezed  coherent state photon-number  variance, un2, on 
the angle 8. The light is super- or sub-Poisson depending on 8. 
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Figure 12. Electric-field time  dependence for the  squeezed vacuum state. 

phase.  This  benefit, of course,  comes  at  the  expense of an increase in the noise at 
other values of the  phase.  In  contrast,  the noise of unsqueezed  states, such as  the 
vacuum state (figure 7) and  the  coherent  state (figure 6), is the  same  for all values of 
the  phase. 

As a  final  example,  illustrated in figure 14, we consider  the  superposition of a 
vacuum  field, a,, and  a  coherent  field, a,, by the use of a 50/50 lossless beamsplitter. 
This  device  has an intensity  transmission  coefficient q = 4 and a field transmittance 
V'q = l/v2. The  means  and variances of the  superposed  quadrature field components 
are  taken  to  be  the sums of the individual  contributions at the  output  port: 



P 

t 

Tutorial in Quantum Optics 165 

P 

Figure 13. Electric-field time dependence  for  the  squeezed  coherent  state 
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Figure 14. Quadrature-component  uncertainties  for t h e  superposition of a  coherent field 
with unsqueezed  and  squeezed vacuum fields at  a 50150 beamsplitter. 

Using  this  rule,  an  unsqueezed vacuum field superposes with coherent light to 
produce  coherent light of reduced mean.  This is the  expected result  since  unsqueezed 
vacuum simply represents  an  open  port.  On  the  other  hand, a  squeezed  vacuum field 
superposed with coherent light leads to a  squeezed field with properties  intermediate 
between  the  squeezed vacuum and  the  unsqueezed  coherent field with 

and 

1 up = - 
7 d (l +, e2r) > -  
i L L 
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The squeezing  properties of the  superposition  can  be  enhanced by using an 
unequal  beamsplitter (9 > 4). We  then have an  output field 

As q + 1, (1 - q -+ 0), with (1 - q)/(uI2 >> 3, the  superposition  becomes  as fully 
squeezed  as  the  squeezed  vacuum.  However,  this  requires  that /aI2 + W ,  i.e.  that  the 
coherent field be  arbitrarily  strong. 

5. Detection of quadrature-squeezed light 

Several  methods can  be  considered  for the  detection of quadrature-squeezed  light: 
direct  detection, single-ended  homodyne  detection,  and  balanced  homodyne  detec- 
tion.  Direct  detection records  the  photon  counts. The  squeezed vacuum state  has a 
mean  photon  number  and a  photon-number  variance given by equations (12) and (13) 
above.  This  state has twice the Bose-Einstein variance, i.e. it is highly super-Poisson 
and  therefore noisy.  Direct  detection is not  generally  suitable  for  detecting quadra- 
ture-squeezed light because it fails to discriminate  against the noisy quadrature. 
Because  there  are  certain values of the phase  where the electric field variability 
becomes  small,  however, we turn  instead to a  phase-sensitive  form of detection, viz. 
homodyning [4]. 

Homodyning  can  be  used to extract  the  quadrature of the field with reduced 
fluctuations.  In  the  single-ended  configuration  (figure 14), the  squeezed-vacuum light 
is combined  at  an  unequal  beamsplitter with the  coherent  light, a,, from  a  laser local 
oscillator (LO). If q + 1, with a sufficiently strong LO, the  superposition field shares 
characteristics with the  squeezed  coherent  state. If the LO phase is chosen  properly, so 
that 8 is an odd integral  multiple  of d 2  (see  figures 10 and l l ) ,  the  superposition field 
will be  photon-number  squeezed, resulting in sub-Poisson  photocounts or, equivalent- 
ly,  a  sub-shot-noise  spectrum. 

A  problem with single-ended  homodyne  detection is that a  very  strong local 
oscillator is required  to  achieve  the  optimal  conditions.  Furthermore,  unwanted  (but 
sometimes  unavoidable)  fluctuations in the power of the local oscillator (excess noise) 
serves to increase the noise in the  superposition  beam,  and  therefore to mask the 
squeezing.  A few years  ago  Yuen  and  Chan  [l81  suggested  a  modification of the 
single-ended  configuration  based  on the  ideas of balanced  detection in microwave 
mixers and optical  systems [19]. This  method  has  important  implications for eliminat- 
ing the  quantum noise in the  coherent local oscillator, as well as excess LO noise,  as 
shown in figure 15. A  squeezed  vacuum signal and  a  coherent local oscillator are 
incident on a 50/50 beamsplitter.  The light in both output  ports is detected so that  no 
energy is lost.  Because of the  phase shift at  the  beamsplitter,  the  contributions  of  the 
vacuum at  the  output  ports differ by a  sign. After  the two  beams  are  detected, they are 
differenced to provide  the  balanced-detector  output. 

The process  can  be  described in terms of the  diagrams  shown  at  the  bottom  of 
figure  15. The lines and circles represent  the  coherent  state;  the ellipses represent  the 
squeezed  vacuum  state.  The uncertainties arising from  the  coherent-state LO appear at 
both  output  ports; because  they are  correlated they  can be  subtracted. In contrast,  the 
uncertainties  associated with the  squeezed vacuum  states are  anticorrelated  and 
therefore  add  when  subtracted.  The  net result is that  the original  squeezed  vacuum 
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uncertainty is recovered with no  quantum  or excess noise  contributed by the local 
oscillator.  This is an  important  result  because it shows that  the balanced  mixer can be 
effectively  used to achieve  ideal  homodyne  detection. 

6. Generation of quadrature-squeezed light 

Quadrature-squeezed light may be  generated by separating  the field into its x and p 
components,  and  then by stretching one  and squeezing the  other. To accomplish the 
separation, a  phase shift must  be  introduced. A nonlinear  optical  medium  that 
provides  phase  conjugation  can  achieve  this,  as  illustrated in figure 16. If the wave and 
its  conjugate  are  multiplied by p = cosh r and v = sinh r ,  respectively, and  then 
added,  the  net result is a  quadrature-squeezed field with squeeze  parameter r .  Due  to 
the  trigonometric relation  between cosh r and  sinh r 

BALANCED 
DETECTOR  DETECTOR 

OUTPUT 

50/50 BEANSPLITTER 

SIGNAL  DETECTOR 
PHOTON 

Sum Dif ference - 
Signal Signal 

Squeeted- 

Signal 
- Vacuum 

Figure 15. Balanced  homodyne  detection of a squeezed vacuum field 
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Since the wave is stretched by cosh r ,  and  its  conjugate by sinh r ,  the  superposition 
may be viewed  schematically as in figure 17. 

Yuen  and  Shapiro [20] were the first to consider the  generation of quadrature- 
squeezed light by the use of a  phase-conjugate  mirror.  They  suggested  implementing 
the  process by degenerate four-wave mixing, as indicated  schematically in figure 18. A 
phase-conjugate  mirror of this  type  multiplies by a  constant  and  ,conjugates fields 
reflected  from  it ( a  + v a t ) ,  but simply multiplies  transmitted  fields by a  constant (a + 
p a ) .  Any  open  port in such  a  system  admits  vacuum  fluctuations that can serve to 
reduce  the  squeezing.  In  the  phase-conjugate  mirror,  however,  the vacuum  fluctua- 
tions  are  converted  to  squeezed vacuum  fluctuations which do not  dilute  the  squeezing 
properties of the  result, which is the  squeezed  coherent  state. 

Quadrature-squeezed light has  been  generated  nearly  simultaneously by Slusher et 
a1 [21] and in a  number of other  laboratories, using a  variety of three-  and  four-wave 
mixing schemes [22-251. Substantial noise reduction  (below  the  shot-noise  level)  has 
been  achieved, most  notably in the  experiments of Kimble and his co-workers  [23, 
261. 

WAVE 
f[a (e"w' + c.c.] 

xcoswt+psinwt 

cosh r = 

:[er + e-r] $[a cosh r+a* sinh r] e"Y' 
f[a e"y'+c.c.] + C.C. * 

xcoswt+psinwt 

INPUT  AVE 
x er cos wt + p e" sin wt 

SQUEEZED  WAVE E, sinh r = 

f[er-e-r] 

CONJUGATOR 
x cos wt  - p sin wt 

f[a* e""+c.c.] 
CONJUGATED  WAVE 

X 

Figure 16. Generation of quadrature-squeezed light by the use of a nonlinear medium 
providing phase conjugation. 
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4 sinh r 

Figure 17. Schematic  illustration of quadrature-squeezed light generation using phase 
conjugation. 
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Figure 18. Generation of quadrature-squeezed light using a  phase-conjugate  mirror  (im- 
plemented by degenerate  four-wave mixing). 
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7. Examples of photon-number-squeezed light 

We  turn now to photon-number  squeezing.  A  principal  example is provided by the 
number  (Fock)  state  depicted in figure 19 [27]. It  has  the  properties 

112 

ux = (; + ,) ; up = (; + ,)li2 

u n = O .  (27) 

Its  quadrature  uncertainties  are symmetrical  and  large; it is not  a  minimum-uncertain- 
ty state. In the  polar-coordinate  representation, its phase is totally  uncertain  though 
its magnitude  (represented by the radial  uncertainty) is rather  restricted. According to 
quantum mechanics,  however, the  mean  photon  number (n )  has a  variability U,, that is 
precisely  zero  for the  number  state.  This  state is therefore  squeezed in its photon 
number, since U,, C (n)1’2 (see 0 3 ) ,  rather  than in one of its quadratures, x or p .  The 
number  state  represents a nonclassical field,  not by virtue of its  phase  properties,  but 
rather by virtue of its  amplitude  properties. 

The electric-field  time  dependence  for the  number  state is illustrated in figure 20. 
Phasors within the  uncertainty  area  trace  out  an  electric field of rather  constant 
amplitude  but of uniformly  distributed  phase.  However its photon  number is determi- 
nistic. For n = 0, the  number  state is to be  distinguished  from the vacuum state (figure 
7)  where  the  phasor  magnitude is arbitrary.  The n = 0 number  state is the vacuum 
state,  as is the (Y = 0 coherent  state. 

P 

Figure 19. Quadrature-component  and number-phase uncertainties for the  number  state. 
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Figure 20. Electric-field time  dependence for the  number  state 

8. Detection of photon-number-squeezed  light 

In  contrast with  quadrature-squeezed light where  homodyning is usefu1,for detection, 
photon-number-squeezed light may be observed with direct  detection [15]. Two 
photon-counting  approaches to direct  detection  are  illustrated in figure  21. The 
photoelectron  point  process  (figure 21(a)) is a  time  record of the  photons  registered 
by the  detector.  When  generated by photon-number-squeezed light it has  a  distinct 
character; in the  counting time T the  photon-number  variance U,* is less than  the 
photon-number  mean (n). The photon  registrations  are  sub-Poisson. The  Fano factor 
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Figure 21. Direct  detection of photon-number-squeezed light: ( a )  photoelectron  point 
process, ( b )  filtered photoelectron point process. 

i.e.,  the variance  divided by the  mean, is therefore less than  unity. A Poisson 
distribution, such  as that  generated by coherent  light,  has a variance  that is always 
identically equal  to  the  mean  and  thus a Fano  factor of unity. A super-Poisson 
distribution, by definition,  has  a  Fano  factor  greater  than  unity. 

If the  photoelectron  point process is detected in filtered  form,  the result is 
illustrated in figure 2l(b).Jn this  case,  the variables of interest  are  the  mean  current 

( i )  = - = 2eB(n) 
T 

where e is the  electronic  charge,  the  current variance 

and  the  detection  filter  bandwidth B (= 1/2T). The role of the  Fano  factor F,, is played 
by at/2e(i)B. Photon-number-squeezed light therefore  produces a  sub-shot-noise 
photocurrent with 

a: < l  
24i)  B 

or, if the  point process is observed in unfiltered form, sub-Poisson  photon  counts (F,, 
< 1). 

9. Generation of photon-number-squeezed light 

Photon-number-squeezed light may be  generated by introducing  anticorrelations  into 
successive photon  occurrences [15]. One way to visualise this is by means of an 
analogy  with  a  photon  gun, as  illustrated in figure 22. Photon guns  naturally generate 
random  (Poisson)  streams of photons (figure 22(a)). The production of photon- 
number-squeezed light can be achieved in three ways: by regulating  the times at which 
the  trigger is pulled, by introducing  constraints  into  the  firing  mechanism,  and/or by 
selectively  deleting some of the Poisson bullets  after  they are  fired.  Each of these 
techniques  involves  the  introduction of anticorrelations, which results in a more 
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( b )  Dead- t ime  de le t ion  
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I 
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Figure 22. Schematic  representation of three components of a simple photon-generation 
system. A trigger process excites a photon emitter (firing mechanism), which in turn  emits 
photons (Poisson bullets).  Anticorrelations can be induced in any of the three elements 
(from [15], reprinted with permission from North-Holland  publishing.). 

predictable  sequence of events.  The  anticorrelations  themselves  are  introduced by 
means of a  feedback  (or  feedforward)  process of one kind or  another. 

Several specific schemes  for  introducing  such  photon  anticorrelations  are  shown in 
figure 22. Dead-time  deletion (figure 22(b) )  prohibits  photons  from being  arbitrarily 
close to each  other.  This effect can  result  from  a  requirement that  the trigger or firing 
mechanisms  reset  between  consecutive  shots.  This is, in fact,  the way  in which isolated 
atoms  behave in the  course of emitting  resonance  fluorescence  photons [ll, 28, 291. 
Under  appropriate  conditions,  dead  time can  instead be imposed  on  the bullets after 
they  are  fired.  The  dead-time  deletion process  regularises the  events,  as is apparent 
from  the  figure,  thereby reducing the  randomness of the  number of events  registered 
in the fixed  counting  time T.  

Photon  anticorrelations  can also  be  introduced by coincidence decimation, which 
is a  process in which closely spaced  pairs of photons  are  removed  from  the  stream 
(figure 22(c) ) .  Optical  second-harmonic  generation (SHG), for  example, is a  nonlinear 
process in which two  photons  are exchanged  for  a  third photon  at twice the  frequency. 
Both  photons must  be  present within the  intermediate-qtate  lifetime of the SHG 
process for  the  nonlinear  photon  interaction  to  occur.  Again,  the  removal of closely 
spaced  pairs of events  regularises the  photon  stream. 

The process of decimation is defined  as  every  Nth  photon ( N  = 2,3 ,  ...) of an 
initially  Poisson photon  stream being  passed while all intermediate  photons  are 
deleted.  The passage of every other  photon (N = 2 )  is explicitly illustrated in figure 
22(d) .  The regularisation  effect  on  the  photon  stream is similar to  that  imposed by 
dead-time  deletion.  This mechanism  can  be used when  sequences of correlated 
photon  pairs  are  emitted;  one  member of the pair  can be  detected  and used to  operate 
a gate  that selectively passes every  Nth  companion  photon. 
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Overflow  count  deletion is another  feedback  mechanism  that can introduce  anti- 
correlations (figure 22(e) ) .  The  number of photons is counted in a  set of preselected 
time  intervals [0, T],  [ T ,  227,. . . ; the first no photons in each  interval  are  retained  and 
the  remainder  deleted. If the  average  number of photons in [0, T j  of the initial  process 
is much  greater  than no, then  the  transformed  process will almost always contain no 
counts  per  time  interval. 

Finally,  rate  compensation is illustrated in figure 2 2 0 .  In this  case the  (random) 
number of photons is counted in a short  time T1; this  information is fed back to 
control  the  future  rate  at which the trigger is pulled. If the  random  number  measured 
in T1 happens  to  be below average,  the trigger is subsequently  pulled  at  a  greater  rate 
and vice versa.  More generally,  each photon  registration  at  time ti of a  hypothetical 
Poisson photon process of rate a0 causes  the rate A of the  transformed point  process  to 
be  modulated by the  factor h(t - ti) (which vanishes  for t<ti). In  linear negative 
feedback  the  rate of the  transformed process  becomes 

A variety of techniques  can  be used to implement  rate  compensation, such  as quan- 
tum  nondemolition (QND) measurements  or  correlated  photon  pairs.  Dead-time  dele- 
tion  can  be viewed as  a  special  case of rate  compensation  in which the  occurrence of 
each  event  sets  the  rate of the process to zero  for  a  specified  period of (dead)  time 
after  the  registration. 

We first  consider  the  generation of conditionally photon-number-squeezed light 
(figure 23). This  effect  can only be  observed by gating the  detector  open  for a 

( 0 )  
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( b )  
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Figure 23. Schematic diagram illustrating the  generation of conditionally photon-number- 
squeezed  light. (a )  Configuration for atomic  resonance  fluorescence  where  the entry of a 
single atom into  the field of view of the apparatus gates  the detector  open for a brief time. 
(b)  Configuration  for  correlated  photon pairs (e.g. spontaneous  parametric  downconver- 
sion or 40Ca correlated  photon emissions), where one  partner of a photon  pair  gates  the 
detector  open for a brief time  (from [15], reprinted with permission from North  Holland 
publishing). 
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Figure 24. Experimental apparatus for  the  generation of conditionally photon-number- 
squeezed  resonance fluorescence photon clusters from isolated Na atoms (from [28], 
reprinted with permission from Plenum publishing). 

Cond i t i ona l   Emiss ions  

Excitation (single event)  Excitation (single event) 

Emission  Emission 

W i t h   E x c i t a t i o n   S t a t i s t i c s  

Excitat ion (Poisson) Excitat ion (Poisson) 

Emission  Emission 

Super-Poiason 

(a) 

Figure 25. Conditional  photon-number squeezing is destroyed by the  excitation statistics. 
Top ( U ) :  Sample function for a conditionally photon-number-squeezed  resonance- 
fluorescence  photon  cluster.  Bottom (a):  Poisson entries of atoms into the apparatus  and 
unsynchronised gating result in unconditionally super-Poisson  resonance-fluorescence 
radiation. Top (b):  Sample function for a conditionally photon-number-squeezed 40Ca 
violet photon emission. Bottom (b ) :  Poisson entries of 4"Ca atoms into the apparatus  and 
unsynchronised gating lead to unconditionally Poisson green and violet photons (from 
[15], reprinted with permission from North-Holland  publishing). 
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prespecified  time  window to  ensure  that it is responsive  only  during the  time  period 
when  an  anticorrelated  number of photons is expected to  arrive.  This  requires  know- 
ledge of when  this will happen.  Nonlinear optics  mechanisms  (atomic  resonance 
fluorescence [ l l ,  281 and  parametric  downconversion)  can  generate  small  clusters of 
such photons,  e.g. two or  three  photons for  resonance  fluorescence  from  an  isolated 
atom in a typical experiment  (figure 24) or a single photon  for  parametric  down- 
conversion.  Unfortunately,  conditional  photon-number  squeezing is destroyed by the 
random excitation  statistics  when the  detector gating is eliminated,  as  illustrated in 
figure 25. 

Unconditionally photon-number-squeezed light can  be generated by the use of 
either  photon  feedback  or excitation  feedback to  introduce  anticorrelations  into  the 
photon  occurrence times. The  detector is not  gated.  The  former  method is discussed 
first. Photons generated by a given process  are  fed  back to control  it;  this may be 
accomplished by using a  variety of nonlinear-optics  techniques. Methods using feed- 
back  intrinsic to a physical process  (figure 26(a ) ) ,  simply stated,  remove  selected 
clusters of photons  from  the incident pump  beam, leaving behind  an  antibunched 
residue  (as  illustrated in figure 22(c)). External  feedback  can  also  be used to achieve 
this  (figure 26(b)). 

A simple  example is a  process in which photon  pairs  are  produced, with one 
member of the pair  being used to  control its twin (figure 27). Control mechanisms 
such  as  decimation,  dead-time  deletion,  and  rate  compensation, all illustrated in 
figure 22, can  be  used to accomplish these  ends. Two  techniques  for  achieving  this  are 
portrayed in figures 28 and 29. The first  (figure 28) is a  suggested  configuration  that 
makes use of cascaded  atomic emissions [30]. A photon  from  the initial  (green)  atomic 
transition is detected in the conventional manner  to  provide  an  external  feedback 
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Figure 26. Schematic diagram illustrating the  generation of unconditionally photon- 
number-squeezed light by means of photon  feedback. ( a )  Feedback process intrinsic to a 
physical light-generation mechanism. (b)  Feedback process carried by way of an  external 
path.  The feedback may take  the form of an electrical signal or an optical signal (from 
[15], reprinted with permission from North-Holland  publishing). 
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Figure 27. Schematic diagram illustrating the  generation of unconditionally photon- 
number-squeezed light by correlated  photon pairs (photon clones) and external  feedback. 
One of the twin photon beams is annihilated to generate  the  control signal. (a) Optical 
control of one beam by its twin; ( b )  photon-source  control; (c) excitation control (from 
[15], reprinted with permission from North-Holland  publishing). 
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Figure 28. Suggested configuration for the  generation of unconditionally photon-number- 
squeezed light using correlated  photon  pairs, in this case cascaded photon emissions from 
40Ca atoms  (from [30], reprinted with permission from North-Holland  publishing). 
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signal.  This  signal is used selectively to permit  certain  photons  from  the  second  atomic 
transition  (violet)  to pass through  an  optical  gate  (for  example, by means of the 
decimation  process  illustrated in figure 22(d)). Since the  photons  are always emitted 
in correlated  pairs,  the  selected twins  survive  and contribute  to  the light at  the  output. 
This  experiment is  of the  type  represented in figure 27(a). The second  technique, 
which has  been  experimentally  implemented [31, 321, makes use of parametric  down- 
conversion  (figure 29). This effect may be  described as  the splitting o f a  single photon 
into  two  (correlated)  photons of lower  frequency. The experiment  used  an  electro- 
optic  modulator  to  provide  analog  rate  compensation of the  pump  power  (see figure 
2 2 0 )  provided by the  control  beam.  Thus, this  experiment is of the  type  represented 
in figure 27(c). It is worthy of mention  that a  two-mode  optical  parametric  oscillator 
operating above threshold  has  been used to  generate high-intensity twin beams 
exhibiting  strong quantum  correlations [33]. 

Finally, in the  context of photon  feedback, we mention  a  scheme  for  generating 
photon-number-squeezed light using a  quantum-nondemolition (QND) measurement, 
by means of which an  observable may be  measured  without  perturbing  its  free  motion. 
It  has  been  proposed by Yamamoto  and his co-workers [34] that  the  results of a QND 
photon-flux  measurement  at  the  output of a  semiconductor  diode  injection  laser  could 
be negatively  fed  back to control  the laser  excitation rate (figure 30), thereby  produc- 
ing photon-number-squeezed light by rate  compensation in the  manner  shown in 
figure 2 2 0 .  In  principle, the  feedback signal could  be obtained  from a probe laser in 
conjunction with a Kerr  nonlinear  interferometer,  as  shown in figure 30. The QND 
principle  has  indeed  been  experimentally  verified,  but in a  different  configuration 
L351 * 

We now turn  to excitation  feedback, which provides an  alternative  technique  for 
generating  unconditionally  photon-number-squeezed  light. In this  case,  the  excitation 
process itself is rendered sub-Poisson by means of feedback,  as  illustrated  schemati- 
cally in figure 31 (compare with figure 26 for  photon  feedback).  The  feedback 
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Figure 29. Block diagram for photon-number-squeezed light generation using correlated 
photon pairs, in  this case from  parametric downconversion (from [32], reprinted with 
permission from the American Physical Society). 
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Figure 30. Proposed scheme for generating  photon-number-squeezed light using a quan- 
tum-nondemolition (QND) measurement of the  laser-output  photon  number  to  control  the 
laser excitation rate (from [34], reprinted with permission from the  American Physical 
Society). 
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Figure 31. Schematic diagram illustrating the  generation of unconditionally photon- 
number-squeezed light by means of excitation feedback: (a)  feedback process intrinsic to 
a physical excitation mechanism; ( b )  feedback process intrinsic to the  source.  Excitation 
feedback can also be carried externally (from [15], reprinted with permission from 
North-Holland publishing). 

mechanism  may be  either intrinsic to a physical process or  external.  Some of the 
limitations  inherent in photon-feedback  mechanisms  are  avoided by the use of excita- 
tion  feedback [15]. Excitation-feedback  methods  provide  the  greatest  promise  for 
producing  sources with low Fano  factor, large photon flux, high overall  efficiency, 
small  size,  and the capability of being modulated  at high speeds.  Excitation  feedback 
methods  are also  referred  to  as  'direct  generation  methods'. 
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Such methods  operate by permitting  a  sub-Poisson  number of excitations  (e.g. 
electrons) to  generate a  sub-Poisson  number of photons;  the  photons may be viewed 
as  representing  a  nondestructive  measurement of the  electron  number.  This is to be 
distinguished  from the QND configurations  mentioned  earlier in which a  sub-Poisson 
number of photons causes an electrical current  to  be  generated as a  result  of  a  phase 
measurement, which in turn signals the  photon  number  (without  destroying  the 
photons).  It is far  easier  to achieve  a  measurement of the  electron  number  than  the 
photon  number because of the  robustness of the  electrons.  Unlike  photons,  they  are 
not  destroyed by optical  measurement  techniques. 

Several  excitation-feedback  methods  have  made use of the  inherent sub-Poisson 
nature of an  electron  current.  Coulomb repulsion, which is the underlying  physical 
feedback process in space-charge-limited  current  flow, is ubiquitous  when  excitations 
are achieved by means of electrons.  Single-photon  emissions  (ideally, one  per elec- 
tron) may be  obtained in any  number of ways. One  example is spontaneous fluoresc- 
ence  emission, as  shown in figure 32 for  Hg  vapour.  The first  source of unconditional- 
ly photon-number-squeezed light was produced in a  space-charge-limited  Franck- 
Hertz  experiment [14],  as  illustrated in this  figure. A block diagram  of  the ex- 
perimental  apparatus is presented in figure 33. 

Unfortunately  the loss of photons, as  a  result of imperfect photon  generation, 
collection,  and  detection,  randomises  the  statistical  properties of anticorrelated  ex- 
citations,  as  shown in figure 34. If the losses are sufficiently severe,  random  (Poisson) 
photons will be  generated. Effects  such  as attenuation,  scattering  and  the  presence of 
background  photons  reduce  the  degree of photon-number  (and  quadrature)  squeez- 
ing,  and  must  therefore  be assiduously avoided. 

Source Detector 

Figure 32. Schematic representation of the  generation of unconditionally photon-number- 
squeezed light using the space-charge-limited Franck-Hertz effect in Hg  vapour  (from 
[13], reprinted with permission from the  Optical Society of America). 
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Figure 33. Block diagram of the space-charge-limited Franck-Hertz experimental appar- 
atus that  produced  the first source of unconditionally photon-number-squeezed  light. The 
wavelength of the light was 253.7 nm  in the ultraviolet (from (141, reprinted with permis- 
sion from the Optical Society of America). 
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Figure 34. Schematic illustration of photon-number-squeezed light generation using ex- 
citation  feedback.  Photon loss has a  deleterious effect on  the  degree of photon-number- 
and  quadrature-squeezing. 
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Because of this,  several high-collection-efficiency , solid-state,  excitation-feedback 
configurations  were  developed.  Current  supplied  from a DC source, such as a battery 
for  example, is naturally  sub-Poisson  as  a  result of the intrinsic Coulomb  repulsion of 
the electrons  (the principal  source of noise is Johnson  noise). In such  cases  it suffices 
to drive  a  light  emitter  that  operates by means of single photon  transitions with such  a 
current.  Thus, a  simple  light-emitting  diode (LED),  driven by a  constant  current 
sourze,  should  emit  photon-number-squeezed  light.  Tapster,  Rarity,  and Satchel1 [36] 
have  shown  that this is indeed  the  case.  Their  experiment, which is shown in figure  35, 
is a  solid-state  analogue of the space-charge-limited  Franck-Hertz experiment.  The 
series  resistor  serves to ensure  that a  constant-current  source  drives  the LED. Similar- 
ly,  a  constant-current-driven  semiconductor  injection  laser  (figure  36), which is analo- 
gous to a  stimulated-emission  version of the space-charge-limited Franck-Hertz ex- 
periment [37], also  behaves in this manner [38]. 

Fast  response  (small  electron  anticorrelation  time 7,) is one of the  desirable 
characteristics  for  photon-number squeezing. The characteristic  anticorrelation  time 
T~ in external  feedback circuits may be  larger  than  that  for  space-charge-limited 
electron  excitations (T~). The  observation (counting)  time T ,  and  area A ,  must  be 
sufficiently  large in comparison with the  appropriate  characteristic times and  spatial 
extent, respectively,  and the  generation efficiency q as close to unity as possible, to 
achieve  optimal  squeezing. 

These  considerations have  led us to  propose a  semiconductor  device  structure in 
which sub-Poisson  electron  excitations are  attained  through space-charge-limited 
current  flow,  and  single-photon emissions  are  achieved by means of recombination 
radiation  [39]. A device of this  nature  would  emit  unconditionally  photon-number- 
squeezed  recombination  radiation. One possible energy-band  diagram  for  such  a 
space-charge-limited  light-emitting  device  (SCL-LED) is illustrated in figure 37. Sub- 
Poisson  electrons  are  directly  converted  into  sub-Poisson  photons,  as in the  space- 
charge-limited  Franck-Hertz experiment,  but  these  are now recombination  photons 

VOLTllGE 

"" IR LED 
Figure 35. Block diagram of the  constant-current-driven light-emitting diode (LED) used to 
generate unconditionally photon-number-squeezed light (from [36], reprinted with per- 
mission from the European Physical Society). 
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Figure 36. Conceptual suppression of the fluctuations of active atoms in a  space-charge- 
limited Franck-Hertz laser (left).  Photon-number-squeezed light generation by suppres- 
sion of electron  pump fluctuations in a  constant-current-driven  semiconductor  injection 
laser (right) (from (371, reprinted with permission from the  American Physical Society). 
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Figure 37. Possible energy-band diagram of a  solid-state  space-charge-limited light-emit- 
ting device (LED or laser)  under (a )  equilibrium conditions  and ( b )  strong  forward-bias 
conditions. The curvature of the intrinsic region under  forward-bias  conditions  indicates 
the  space-charge  potential  (from [39], reprinted with permission from  the  Optical Society 
of America). 
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in a  semiconductor.  The properties of the light generated by the SCL-LED can be 
enhanced by permitting stimulated emissions to occur. Advantages would include 
improved beam directionality, switching speed, spectral properties  and coupling effi- 
ciency to an optical fibre. 

10. Early nonclassical light experiments 

A list of early experiments in  which  nonclassical  light  was generated is provided in 
table 1. The experimental activity  was initiated in  1977  by the observation of photon 
antibunching in a single-atom resonance fluorescence [29]. Conditional photon-num- 
ber squeezing was observed in  1983,  also from single-atom resonance fluorescence 
[l l] .  The first source of unconditional photon-number-squeezed light  was generated 

Table 1. Early nonclassical light experiments. 

YEAR  EFFECT  EXPERIMENT  SOURCE 

1977 

1983 

1985 

1985 

1986 

1986 

1987 

1987 

1987 

1987 

1987 

Photon 
antibunching 

Conditional 
photon-number 
squeezing 
Photon-number 
squeezing 

Quadrature 
squeezing of 
the vacuum 
Quadrature 
squeezing of 
the vacuum 
Quadrature 
squeezing of 
the vacuum 
Quadrature 
squeezing of 
the vacuum 
Quadrature 
squeezing of 
the vacuum 
Photon-number 
squeezing 

Photon-number 
squeezing 

Photon-number 
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in 1985 using the space-charge-limited  Franck-Hertz  experiment [14]. Quadrature 
squeezing of the  vacuum, via both  four-wave  and  three-wave mixing, was achieved 
shortly  thereafter [21-251. In 1987, unconditionally  photon-number-squeezed light 
was produced by a specially fabricated  constant-current-drive  semiconductor  injection 
laser [38], by a  parametric  downconversion  device [31] and by a  constant-current- 
driven  light-emitting  diode  [36]. 

11. Applications of squeezed light 

Aside  from its intrinsic  usefulness in carrying out  fundamental  experiments in optical 
physics, there  are a  number of general  areas in which the use of quadrature-  and/or 
photon-number-squeezed light may be  advantageous.  These  include  spectroscopy 
[40], interferometry [41], precision  measurement [17, 421, light-wave communications 
[15, 43, 441 and visual science [45]. Quantum fluctuations  can limit the sensitivity of 
certain  experiments in all of these  areas.  We briefly discuss three  examples  where  the 
use of photon-number-squeezed light might prove  beneficial, in the  areas of light- 
wave  communications  and visual science. 

An idealised  direct-detection light-wave communication  system is illustrated in 
figure  38. Errors (misses  and false alarms)  can  be  caused by noise from  many  sources, 
including photon noise  intrinsic to  the light source.  The use of photon-number- 
squeezed light in place of coherent light can  bring about a  reduction in this  noise,  and 

Light 
Detec tor   Source  ’ Photo - 
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W 

B i n a r y  
I n f o r m a t i o n  In fo rma t ion  
Recons t ruc t  

n r n n r n r n n r ~ ~ ~  
ERROR 
(HISS) (FALSE ALARPI) 

ERROR 

Figure 38. Idealised direct-detection binary ON-OFF keying light-wave communication 
system.  Potential  sources of noise include: photon  noise,  background  light, cosmic-ray- 
induced  Cerenkov light, coupling partition  noise,  photodetector dark noise,  photodetec- 
tor avalanche (multiplication) noise and  electronic  (Johnson)  noise. 
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thereby  the  probability of error,  as shown  schematically in figure 39. For a coherent 
source,  each pulse of light contains  a  Poisson  number of photons so that  the  photon- 
number  standard  deviation U, = (n)1'2. For  photon-number-squeezed  light,  each  pulse 
contains  a  sub-Poisson number of photons so that U, < (n)1'2. This  noise  reduction 
results in a  decrease in the  error  probability.  The  mean  number of photons  per bit (n ' )  
required  to achieve  an error probability of in a  simple  binary  ON-OFF  keying 
system  whose  only  source of noise is binomial  photon  counts  (with Fano  factor F,), is 
shown in figure 40. As the  Fano  factor  decreases below unity, (n ' )  decreases  below  its 
coherent-light ( F ,  = 1) 'quantum limit' of 10 photonsibit. 

Photon-number-squeezed light may also  prove to be  a useful tool in visual science. 
The use of such light could,  for  example,  help to clarify the functioning of the 
mammalian  retinal  ganglion cell (figure 41). This cell sends signals to higher visual 
centres in the brain via the  optic  nerve. In response to light,  the ganglion cell 
generates a  neural  discharge that consists of nearly  identical  electrical  events  occur- 
ring  along  the  time axis (the ganglion-cell discharge  point  process). The statistical 

SINGLE  PULSE OF LIGHT I 

Coherent  Light Photons 

H '  

Photon-Number-Squeezed  Light 
A 'A ' A A " " ' 
" W 

Figure 39. Direct-detection light-wave communications using (a) coherent,  and (b)  pho- 
ton-number-squeezed  light. The photon  occurrences in a single pulse of light are shown 
schematically. 
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Figure 40. Direct-detection binary on-off keying (OOK) photon-counting system sensitivity 
using photon-number-squeezed light. It is assumed that  the photon-number  distribution is 
binomial,  that there  are no sources of noise other than  photon  noise, and that  the bit error 
probability is (from [15], reprinted with permission from  North-Holland publishing). 
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Figure 41. Potential use of photon-number-squeezed light in studying the  behaviour of the 
mammalian retinal ganglion cell (from (461, reprinted with permission from Springer- 
Verlag). 
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Figure 42. Potential use of photon-number-squeezed hght in determining  the  relative r6les 
of photon noise, retinal noise and neural noise in the visual response at threshold  (from 
[45], reprinted with permission from  Springer-Verlag). 

nature of this discharge is  assumed to be governed by two elements of stochasticity: 
the incident photons (which are Poisson distributed in  all experiments to  date)  and  a 
randomness intrinsic to  the cell  itself  (which is sometimes taken  to be dead-time- 
modified Poisson) [46]. If the statistical fluctuations of the photons could be control- 
led by exciting the retina with photon-number-squeezed light, the essential nature of 
the randomness intrinsic to the cell could be unambiguously determined. 

The outcome of an experiment in visual  psychophysics  is the  (verbal) response of 
the  entire organism rather than the electrical response of a single cell. It is  widely 
assumed that Poisson photon fluctuations govern the uncertainties inherent in the 
human visual response near the threshold of seeing E471 but substantial retinal and 
central neural noise is  also present (figure 42) [45]. The use of photon-number- 
squeezed light as a stimulus could clarify the roles played by these distinct sources of 
noise. 
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