
R. P. Feynman: 
Interference is … “the heart of QM.   
In reality it contains the only mystery. 
We cannot make the mystery go away 
by ‘explaining’ how it works.” 



“Double-slit” Experiment 
for Electrons 

●  Electrons are accelerated to 
50 keV à λ = 0.0055 nm 

●  Central wire is positively 
charged à bends electron 
paths so they overlap 

●  A position-sensitive detector 
records where they appear. 

●  << 1 electron in system at 
any time 

 
 [A. TONOMURA (Hitachi) --
pioneered electron holography] 
   

 5 min  20 min 
   

 [A. TONOMURA (Hitachi) --
pioneered electron holography] 
   



Application: Electron Holography 

“Aberration corrected 1.2-MV 
cold field-emission transmis-
sion electron microscope with 
a sub-50-pm resolution.” 
Akashi et al., Appl. Phys. Lett. 
106, 074101 (2015) 
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Path lengths are fixed. As entire 
interferometer is rotated, the paths 
are at different heights ! different 
gravitational potential energies ! 
different speeds ! different phases 

  ! fringes 

Neutron interference 

COW experiment: 
Colella, Overhuaser and Werner 
PRL 34, 1472 (1975) 
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We have produced an intense, pure beam of sodium molecules (Na2) by using light forces to

separate the atomic and molecular species in a seeded supersonic beam. We used diffraction from

a microfabricated grating to study the atomic and molecular sodium in the beam. Using three of these

gratings, we constructed a molecule interferometer with fully separated beams and high contrast fringes.

We measured both the real and imaginary parts of the index of refraction of neon gas for Na2 molecule

de Broglie waves by inserting a gas cell in one arm of the interferometer.
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FIG 3. Schematic of our interferometer showing the paths of
Na (dashed line) and Na2 (solid line). Gl, G2, and G3 indicate
the three diffraction gratings.
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SFB & START  

 
  

Which-Path Information, 
 Decoherence & Dephasing 

 
 in Macromolecule Interferometry   

 
 
 

 
Markus Arndt 

Institut für Experimentalphysik, Universität Wien 

ICTP Triest, 8.11. 2004 
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C60 (1999) 

Part A: Matter wave experiments 

He & H2 (1930) 

Electron (1927) 

Neutron (1936) 

Proteins ? 

Porphyrins (2003) 

BEC, Atom Lasers … 
(1995 …) 

Na2, I2, He2-He26 (1994-1996) 

Cold atoms (1988 …) 



Interference of larger particles 
●  Matter-wave interference has now been demonstrated with electrons, 

neutrons, atoms, small molecules, BIG molecules, & biological molecules 
●  Recent Example:  Interference of C60, a.k.a. “fullerenes”, 
“buckyballs” 

 [A. Zeilinger (U. Vienna), 1999] 
   

Mass = (60 C)(12 g/mole) = 1.2 x 10-24 kg  
2

223
. . 3 2.1 10 /

2 2

p
K E kT p kTm kg m s

m

−
= ≈ ⇒ = = ×

λ = h/p = 2.5 pm   (c.f. C60 is ~ 1 nm across!) 
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C
60

Short reminder:  
Far-Field Diffraction at a nanograting 

C  Source60

Collimation 

5 µm
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M. Arndt et al.,  Nature 401, 680 (1999). 

O. Nairz, M. Arndt, A. Zeilinger, AJP 71, 319 (2003). 
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Matter waves of very massive objects ? 

Challenges for very massive objects:    

- smaller de Broglie wavelength 

- tighter collimation 

- smaller count rate 

- high-resolution detector required, … 

   

Solutions:   

1.  Slowing and Cooling: still open field of research  

2.  Near-field interferometery  
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Talbot-Lau Interferometer  

 

Gratings: Heidenhain, Traunreut, AXAF/CHANDRA   

max min

max min

I I
V

I I

−
=

+

Visibility: 

C
70



SFB & START  

Exploring higher mass & complexity 

  C60 F48  
1632 amu !   
108 atoms in a single object ! 
Several isomers with different symmetries 
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Low velocity →  
Vibrational Dephasing !! 
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Interferometry with Porphyrins: C44H30N4 (TPP) 
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Question: 

Will high interference visibility 

vanish with reduced symmetry  

of the quantum object ? 
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Decoherence by collisions: Realization 

Various gases can be added with a well controlled pressure 
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Decoherence by collisions: The Idea 

  Collision generates entanglement 
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Fringe visibility:  
Exponential pressure dependence 
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Three models lead to the same predictions for 
pure de Broglie experiments 

Modern language: „Entanglement“ with the environment 
Leads to an uncontrolled extension of the quantum system. 

May be regarded as a mathematical formulation of Bohr‘s view. 

 
 
 

Heisenberg: „microscope“ argument 
Random recoils wash out the interference pattern 

Bohr: Complementarity 
Which-path information and interference contrast are complementary 
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Can collisions limit matter interferometry ? 

Is a virus interferometer conceivable? 

A „Virus Interferometer“ would not yet be limited by collisions 
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Loss of interference due to 
Thermal Radiation 

When a quantum talks about its position …  

Idea:  

"  Warm bodies emit light   

"  A single photon suffices  to localize the emitter  
to within the photon‘s wavelength 
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“Self-Localization“ due to thermal radiation  

Heating of C70 before it enters the interferometer (up to ~ 3000 K). 

Hot fullerenes emit visible light (see Mitzner& Campbell) 

The interference contrast decreases, with increasing temperature 

L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger & M. Arndt, Nature 427, 711(2004) 

Now 1-µm slit spacing 
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Interference patterns for  
Increasing heating laser power 
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Interference of heated molecules 
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Molecule fragments 
or ionizes (misses 
detector altogether) 



Roy Glauber 

(Semi-)classically 

p ∝ I ∝ E2 p(ΔT ) = I
−ΔT /2

+ΔT /2

∫ (t)dt

Classically, E is real, but we can write 

 


E(r ,t) = dω


E(r ,ω )

−∞

+∞

∫ e− iωt

= dω

E(r ,ω )

−∞

0

∫ e− iωt + dω

E(r ,ω )

0

+∞

∫ e− iωt

≡ dω

E (− )(r ,ω )

−∞

0

∫ + dω

E (+ )(r ,ω )

0

+∞

∫

QM 
Ê = Ê (+ ) + Ê (− ) Ê (+ ) = Ê (− )†

 

Ê (+ )(r ,t) = i ω k

2ε0Vk ,σ
∑ uk ,σ (

r ) e− iωt âk ,σ

Ê (− )(r ,t) = −i ω k

2ε0Vk ,σ
∑ u*k ,σ (

r ) e+ iωt â†k ,σ

Ê ∝ (â − â†)

photon 
creation 

photon 
absorption 

Nobel 2005 
Quantum Theory of Optical 
Coherence & Photodetection 

September 1, 1925 – 
December 26, 2018 



Typical detector has atom size << λ 
! electric dipole approximation: 

‘Ergodic’ fields: ensemble average = time average 

Define “1st-order” correlation function 

sum over final  
states of atom 

light + atom (assume 
initially in ground 
state, ready to count) 

 H = −e

d i

E

Photodetection ~ photoabsorption 
Matrix element 

 f
̂
E (+ )(r ,t) i

 

wi→ f =
prob

unit time
for a photon to be absorbed at r ,t

= f
̂
E (+ )(r ,t) i

f
∑

2

= i Ê (− )(r ,t) f f Ê (+ )(r ,t) i
f
∑

= i Ê (− )(r ,t)Ê (+ )(r ,t) i

 
G (1)(r1,t1;

r2,t2 ) ≡ Ê (− )(r1,t1)Ê
(+ )(r2,t2 )



G(1) measures field-field correlations 
 

For stationary fields: G(t1,t2) = G(τ = t2 – t1) 

E.g.,  

evaluated over 
the initial state 
of the light field 

assume detector is 
localized at one place, 
and very fast 

Prob detection   
per unit time 

 p(t) = G
(1)(r ,t; r ,t)∝ â†â = n̂

ψ = 1 ω

ψ = dω φ(ω ) eiωt 1 ω∫or 

monochromatic field 

single-photon wavepacket 

or mixed state ρ = pi
i
∑ i i

i Ê (− )Ê (+ ) i ⇒ pi i Ê
(− )Ê (+ ) i

i
∑ ≡ Tr(ρ Ê (− )Ê (+ ) )


