R. P. Feynman: Interference is ... "the heart of QM. In reality it contains the *only* mystery

In reality it contains the *only* mystery. We cannot make the mystery go away by 'explaining' how it works."

"Double-slit" Experiment for Electrons

- Electrons are accelerated to 50 keV $\rightarrow \lambda$ = 0.0055 nm
- Central wire is positively charged → bends electron paths so they overlap
- A position-sensitive detector records where they appear.
- << 1 electron in system at any time

[A. TONOMURA (Hitachi) -pioneered electron holography]

Application: Electron Holography

Development of an Atomic-Resolution Holography Electron Microscope^{*1} with the World's Highest Point Resolution (43 picometers)

Tokyo, February 18, 2015 --- Hitachi, Ltd. today announced that it has developed an atomic-resolution holography electron microscope accelerated at a 1.2-megavolt ("MV") under the government-sponsored FIRST Program*2 project named "Development and Application of an Atomic-resolution Holography Electron Microscope" (Principal Investigator: the late Dr. Akira Tonomura, Acting Principal Investigator: Dr. Nobuyuki Osakabe), and has achieved the world's highest point resolution of 43 picometers ("pm"), i.e., 43 trillionths of a meter. With its ability to measure electromagnetic fields at the atomic resolution, the developed microscope will contribute to the advancement of fundamental sciences by supporting the development of cutting-edge functional materials, through elucidating quantum phenomena that cause the functions and properties of high-performance materials, such as magnets, batteries, and superconductors.

"Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution." Akashi et al., Appl. Phys. Lett. 106, 074101 (2015)

Low-pass filtered image Atomic positions Fig.2 Observation case of GaN crystal

Neutron interference

Path lengths are fixed. As entire interferometer is rotated, the paths are at different heights \rightarrow different gravitational potential energies \rightarrow different speeds \rightarrow different phases \rightarrow fringes

COW experiment: Colella, Overhuaser and Werner PRL **34**, 1472 (1975) VOLUME 74, NUMBER 24

PHYSICAL REVIEW LETTERS

Optics and Interferometry with Na₂ Molecules

Michael S. Chapman,¹ Christopher R. Ekstrom,¹ Troy D. Hammond,¹ Richard A. Rubenstein,¹ Jörg Schmiedmayer,^{1,2} Stefan Wehinger,^{1,2} and David E. Pritchard¹

¹Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

²Institut für Experimentalphysik, Universität Innsbruck, A-6020 Innsbruck, Austria (Received 20 January 1995)

We have produced an intense, pure beam of sodium molecules (Na_2) by using light forces to separate the atomic and molecular species in a seeded supersonic beam. We used diffraction from a microfabricated grating to study the atomic and molecular sodium in the beam. Using three of these gratings, we constructed a molecule interferometer with fully separated beams and high contrast fringes. We measured both the real and imaginary parts of the index of refraction of neon gas for Na_2 molecule de Broglie waves by inserting a gas cell in one arm of the interferometer.

Which-Path Information, Decoherence & Dephasing

in Macromolecule Interferometry

Markus Arndt

Institut für Experimentalphysik, Universität Wien

Interference of larger particles

- Matter-wave interference has now been demonstrated with electrons, neutrons, atoms, small molecules, BIG molecules, & biological molecules
- Recent Example: Interference of C₆₀, a.k.a. "fullerenes",

Mass = (60 C)(12 g/mole) = 1.2 × 10⁻²⁴ kg

$$\frac{\langle p^2 \rangle}{2m} = K.E. \approx \frac{3}{2}kT \implies \langle p \rangle = \sqrt{3kTm} = 2.1 \times 10^{-22} kg m/s$$

 $\lambda = h/p = 2.5 pm$ (c.f. C₆₀ is ~ 1 nm across!)

[A. Zeilinger (U. Vienna), 1999]

Short reminder: Far-Field Diffraction at a nanograting

Challenges for very massive objects:

- smaller de Broglie wavelength
- tighter collimation
- smaller count rate
- high-resolution detector required, ...

Solutions:

1. Slowing and Cooling: still open field of research

2. Near-field interferometery

Talbot-Lau Interferometer

Exploring higher mass & complexity

- $+ C_{60} F_{48}$
- 🖕 1632 amu !
- 108 atoms in a single object !
- Several isomers with different symmetries

Low velocity → Vibrational Dephasing !! Interferometry with Porphyrins: $C_{44}H_{30}N_4$ (TPP)

Question:

Will high interference visibility vanish with reduced symmetry of the quantum object ?

~ 2 nm

SFB &

universität wien

Various gases can be added with a well controlled pressure

Decoherence by collisions: The Idea

Collision generates entanglement

$$\psi\rangle = \frac{1}{\sqrt{2}} \left[|C_{70}^{\text{left}}\rangle + |C_{70}^{\text{right}}\rangle \right] \otimes |g\rangle \xrightarrow{\text{coll.}} \frac{1}{\sqrt{2}} \left[|C_{70}^{\text{left}}\rangle |g_{\text{scat}}^{\text{left}}\rangle + |C_{70}^{\text{right}}\rangle |g_{\text{scat}}^{\text{right}}\rangle \right]$$

$$V(p) = 2 \frac{|T_1|}{T_0} \exp\left(-\frac{2L\sigma_{\text{eff}}}{k_{\text{B}}T}p\right) =: V_0 \,\mathrm{e}^{-p/p_0}$$

Bohr: Complementarity

Which-path information and interference contrast are complementary

Heisenberg: "microscope" argument Random recoils wash out the interference pattern

Modern language: "Entanglement" with the environment Leads to an uncontrolled extension of the quantum system. May be regarded as a mathematical formulation of Bohr's view.

A "Virus Interferometer" would not yet be limited by collisions

Loss of interference due to Thermal Radiation

Idea:

- Warm bodies emit light
- A single photon suffices to localize the emitter to within the photon's wavelength

"Self-Localization" due to thermal radiation

Now 1-µm slit spacing

- **Heating of C**₇₀ <u>before</u> it enters the interferometer (up to \sim 3000 K).
- **Hot fullerenes emit visible light (see Mitzner& Campbell)**
- **The interference contrast decreases, with increasing temperature**

L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger & M. Arndt, Nature 427, 711(2004)

SFB & START WIEN

increasing temperature vanishing quantum interference

Molecule fragments or ionizes (misses detector altogether) Roy Glauber Nobel 2005 Quantum Theory of Optical Coherence & Photodetection

September 1, 1925 – December 26, 2018

(Semi-)classically

 $p \propto I \propto \langle E^2 \rangle$

$$p(\Delta T) = \int_{-\Delta T/2}^{+\Delta T/2} I(t) dt$$

$$\hat{E} = \hat{E}^{(+)} + \hat{E}^{(-)} \qquad \hat{E}^{(+)} = \hat{E}^{(-)\dagger}$$

$$\hat{E}^{(+)}(\vec{r},t) = i \sum_{k,\sigma} \sqrt{\frac{\hbar\omega_k}{2\varepsilon_0 V}} \vec{u}_{k,\sigma}(\vec{r}) e^{-i\omega t} \hat{a}_{k,\sigma}$$
photon
absorption
$$\hat{E}^{(-)}(\vec{r},t) = -i \sum \sqrt{\frac{\hbar\omega_k}{2\varepsilon_0 V}} \vec{u}_{k,\sigma}(\vec{r}) e^{+i\omega t} \hat{a}_{k,\sigma}^{\dagger}$$

 $\sum_{k,\sigma} \sqrt{2\varepsilon_0 V}$ photon creation

Typical detector has atom size $<< \lambda$ $H = -e\vec{d} \cdot \vec{E}$ \rightarrow electric dipole approximation:

Photodetection ~ photoabsorption Matrix element $\langle f | \hat{\vec{E}}^{(+)}(\vec{r},t) | i \rangle$

light + atom (assume initially in ground state, ready to count)

 $=\frac{\text{prob}}{\text{unit time}}$ for a photon to be absorbed at \vec{r}, t

$$= \sum_{f} \left| \langle f | \hat{\vec{E}}^{(+)}(\vec{r},t) | i \rangle \right|^{2} = \sum_{f} \langle i | \hat{E}^{(-)}(\vec{r},t) | f \rangle \langle f | \hat{E}^{(+)}(\vec{r},t) | i \rangle$$
wer final
$$= - \langle i | \hat{E}^{(-)}(\vec{r},t) \hat{E}^{(+)}(\vec{r},t) | i \rangle$$

sum o states of atom

states of atom
$$= \langle \iota | E^{(r)}(r,t) E^{(r)}(r,t) | \iota \rangle$$

Define "1st-order" correlation function

$$G^{(1)}(\vec{r}_1, t_1; \vec{r}_2, t_2) \equiv \left\langle \hat{E}^{(-)}(\vec{r}_1, t_1) \hat{E}^{(+)}(\vec{r}_2, t_2) \right\rangle$$

'Ergodic' fields: ensemble average = time average

G⁽¹⁾ measures field-field correlations For stationary fields: $G(t_1,t_2) = G(\tau = t_2 - t_1)$ $p(t) = G^{(1)}(\vec{r},t;\vec{r},t) \propto \langle \hat{a}^{\dagger}\hat{a} \rangle = \langle \hat{n} \rangle$ **Prob** detection evaluated over per unit time assume detector is the initial state localized at one place, of the light field and very fast E.g., $|\psi\rangle = |1\rangle_{\omega}$ monochromatic field $|\psi\rangle = \int d\omega \,\phi(\omega) \, e^{i\omega t} |1\rangle_{\omega}$ single-photon wavepacket or $\rho = \sum p_i |i\rangle \langle i|$ mixed state or $\langle i | \hat{E}^{(-)} \hat{E}^{(+)} | i \rangle \Longrightarrow \sum p_i \langle i | \hat{E}^{(-)} \hat{E}^{(+)} | i \rangle \equiv Tr(\rho \hat{E}^{(-)} \hat{E}^{(+)})$