
Physics 487 – Homework #9	 due Friday 1 pm

You may use anything from the 486/7 formula sheets without derivation
… but do try to see how far you can get on your own on your Desert Island. ☺︎ 
You may also use wolframalpha.com or similar tool to evaluate your integrals 

after you set the up in a form that can be directly entered into such tools.

Problem 1 : Variational Principle : SHO Again	 Griffiths 7.12

Griffiths 7.12(a) & (b) first

▶ (a),(b)  For these parts, find the optimal value of the variational parameter b but DO NOT find the optimal 
value of the other variational parameter n.  Leave n in your answers, as part (c) addresses the variation of n.

▶ Lots of integration in this one.  Feel free to use wolframalpha.  You will need the following integral 
repeatedly, and wolframalpha annoyingly won’t do it, so please use this formula freely : 
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▶ Thanks to Ben H, class of 2020, from 2018 Sunday office hours for this tip: check out 
	 	 	 integral-calculator.com, 
which can do the previous integral.  It comes out in terms of beta functions B(x,y) which are “Euler beta 
functions” if you want to pick them out from the many other “beta functions” in math and physics. 

▶ Lots of Γ functions about.  For this question all you need to evaluate are ratios of Γ functions, and in that 
context this well-known relation is all you need:

	 	  Γ(n) = (n −1)!     or the recursive version,  Γ(n) = (n −1)Γ(n −1) = (n −1)(n − 2)Γ(n − 2) = ...

Don’t worry about the values of Γ(½) and such, you can look all of that up if you want.  Here all you need are 
ratios of Γ functions whose arguments are separated by integers, and those are all doable with Γ(n)=(n–1)!  
For example, Γ(9/2) / Γ(5/2) = (7/2)! / (3/2)! = 7/2 · 5/2 = 35/4. 

(b′)  Why does the trial wavefunction you used in part (b) give you an upper limit on the first-excited state 
whereas the trial function from part (a) did not?  A brief but clear qualitative answer is what we’re looking for, 
no calculations necessary. 

(c)  It is clear by inspection of your part (a) and (b) results that the variational-method energies of the ground 
state and first excited state reach the exact SHO values in the limit n → ∞.  (If it is not obvious by inspection, 
please ask an instructor!)  Why do we get such perfect results?  To find out, show that the trial wavefunctions 
from parts (a) and (b) approach the exact SHO wavefunctions in the limit n → ∞.  

▶ You will need Stirling’s approximation:   ln(z!) ≈ z ln(z) – z for z >> 1.  The exponential of that relation will 
allow you to work with the factorial z! in the limit z → ∞.

Problem 2 : On the nature of Helium, Screening, and Effective Charge 	

Griffiths’ section §7.2 goes through the most CLASSIC application of the variational principle: finding the 
ground state energy of the helium atom including the mutual Coulomb repulsion between the two electrons.  
Here’s a summary.  The Hamiltonian used is : 
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No spin-dependent forces here, just the Coulomb attraction of each electron to the ZHe=2 nucleus and the 
electron-electron repulsion term (which we call Vee for short).  The trial wavefunction used for this classic 
problem is essentially the product of two hydrogen wavefunctions, one for each of helium’s electrons: 
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−Z (r1+r2 )/a0    where a0 is the Bohr radius (see 486 formula sheet).

“Wait”, you remark, “if a0 is the Bohr radius, that trial wavefunction has no variable parameter, I thought we 
were always supposed to include at least one in order to minimize our ground-state energy as much as 
possible?”  You are correct … and there is a variable parameter: it is Z.  “But Z = 2 for Helium!”, you exclaim, 
“I can’t play around with the truth!”  True … but the idea behind this trial wavefunction is to introduce an 
effective Z that will come out less than ZHe = 2 because the effect of the Vee term is to partially screen the 
nuclear charge.  To understand, imagine you are one of the two electrons and that your name is Ivan.  You are 
attracted to the positively-charged ZHe = 2 nucleus, which sits at the center of your probabilistic cloud of 
spherically-symmetric s-shell existence ... but you are repelled by the other electron, named Juan, which is 
probabilistically splattered through space the same way you are.  If you think about Juan using your mastery of 
Gauss’ Law from PHYS 212 (footnote available1), you will realize the following: if you, Ivan, are momentarily 
located a distance rivan away from the nucleus, the only portion of Juan’s probability cloud that affects you is the 
part that is closer to the nucleus than you are, i.e. the part with rjuan < rivan.  Juan is negatively charged, as are 
you, so the electric field you see at your location is due to attraction from the charge +ZHe nucleus & repulsion 
from a portion of Juan’s charge –1 cloud.  Thus, Juan screens part of the +ZHe nuclear charge from you.  Our 
hope is that introducing an effective = screened charge Z as a variational parameter will provide a good 
approximation to the full effect of the Vee term.  

As you see in Griffiths, the best values obtained for the He ground state using the “(hydrogen)2-with-screening” 
trial function are Z = 1.69 (which is less than 2, so yes, the helium nucleus is screened in this model) and 
Egs = –77.5 eV.  This is absurdly close to the experimental value of –79 eV.  You may recall that back in 
homework 5,  you used 1st order perturbation theory to calculate the very same thing – the effect of Vee on the 
helium ground state energy – and you obtained Egs = –75 eV.  That’s not quite as good, but of course with 
perturbation theory, you can keep going, to 2nd order, 3rd order, etc with enough time/energy/processors.  

(a)  The “(hydrogen)2-with-screening” trial function does NOT do such a good job in obtaining the ground state 
of the H– ion, i.e. a hydrogen nucleus surrounded by two electrons in a closed 1s² shell.  Using the trial 
wavefunction described above, calculate the approximate ground state energy of the H– ion with Vee repulsion 
included.
▶  You will need the expectation value < 1/r > for a hydrogenic wavefunction ψnlm.  It is very common in 
atomic calculations to need < 1/r > and/or < 1/r² > for hydrogenic wavefunctions.  The answers are equations 
6.55 and 6.56 in Griffiths, and you are free to use them, but I do want you to know that there is a very fast way 
to get the first one.  You use the super-useful Virial Theorem, which is true in both QM and CM: <V> = –2<T> 
for a particle bound in a 1/r potential.  Since you know < E > = < T + V >for the hydrogenic wavefunctions 
(well, it’s on your formula sheet) and V ~ 1/r,  < 1/r > is easily obtained!  This is problem 6.12 in Griffiths; the 
calculation of < 1/r2 > is addressed in problem 6.33 & 6.32, which is a bit of a project.

1  From Gauss’ Law: the electric field E(r) at a distance r from the center of a spherically symmetric charge distribution is 
Qenc(r)/4πε0r² where Qenc(r) stands for the total charge enclosed within the distance r.  None of the charge outside the radius r affects 
the electric field E(r) at all.  Another way to put this is that a spherically symmetric shell of charge produces zero E-field everywhere 
inside the empty spherical hole in the middle.  That is a fairly AMAZING result from Gauss’ Law, actually … think of all the 
cancellations of all the little field vectors at every point in the empty core that has to occur … symmetry, dude, wow. 



(b)  Let’s leave the H– ion alone for a moment and jargon-bust the word ionization.  It means “the freeing of an 
electron from an atomic bound state”.  Remember that to free a bound particle means to elevate its total energy 
from a negative value (its bound-state energy) to ZERO, at which point it is able to reach ∞ = a place free of 
influence from any other forces (V=0) with just enough kinetic energy to be physical (T=0).  
Consider the He+ ion = a helium nucleus with one electron removed.  As noted above, a He atom has ground 
state energy –79 eV; calculate the ionization energy required to free one electron from a ground-state He atom 
and turn it into a ground-state He+ ion.  
▶  Massive hints: (i) consult the 486 formula sheet (ii) this is a very short problem. 

(c)  Back to the H– ion.  A little sketch of the ion would be nice … these atomic configurations must be blurring 
together by now!  Compare the ground state energy of the H– ion that you got in part (a) to the ground state 
energy of the H atom that you got in 486.  If you do not instantly know the ground-state energy of hydrogen, 
you must memorize it.  It is –13.6 eV.  It is one of those rare numbers that all physicists have committed to 
memory!  It even has a name, the Rydberg energy.  Griffiths calls it E1 in this section.  Suppose an astronomer 
tells you that the H– ion is totally stable, and is called “hydride”, and is commonly found in the atmosphere of 
stars.  Does your calculation from (a) support this information?  Why or why not?

FYI:  The solution to the wonky value of the H– energy is in problem 7.18.  Do read the problem, the concept is 
very nice!  But the solution requires many integrals, and you did so many in problem 1 … we’ll skip it.  


