
Physics 487 – Homework #8	 due Friday 1 pm

You may use anything from the 486/7 formula sheets without derivation
… but do try to see how far you can get on your own on your Desert Island. ☺︎ 
You may also use wolframalpha.com or similar tool to evaluate your integrals 

after you set the up in a form that can be directly entered into such tools.

Problem 1 : Start in an eigenstate, stay in an eigenstate	

Let Q be a Hermitian operator that is associated with an observable and has no explicit dependence on time.  
We have said that if Q commutes with the Hamiltonian H of a system, then the observable associated with Q 
is conserved in the following sense: 

If [Q, H] = 0, the quantum number associated with the eigenvalues of Q is called a good quantum number of 
the system, as we can meaningfully label the system as “being in the state q”.  If the boxed statement were not 
true, we could only say “the system is in state q at some instant t”, which would make q a pretty useless label!

So far, we have based the boxed statement on the relation 

	 	
 

d Q̂
dt

= 1
i!

Q̂, Ĥ⎡⎣ ⎤⎦ + ∂Q̂
∂t

from 486 ... but < Q > is an expectation value – an average – so the stronger boxed statement doesn’t quite 
follow, does it … not entirely satisfying!  You can prove the boxed statement, go for it!  For convenience, if you 
need to, use the commutator relation [AB,C]= A[B,C]+ [A,C]B  that you proved last week. 
▶ One possible way to proceed: Place your system in an eigenstate | q > of Q, use our new time-translation 
operator U(t) with generator H to write down how it will evolve with time, | q(t) >,  then see if | q(t) > remains 
an eigenstate of Q at all times t.  
▶ How NOT to proceed: Do NOT try to show that | q(t) > = | q >.  Why?  Because I can multiply any 
normalized eigenstate by a phase factor and it will still be a normalized eigenstate with the exact same 
eigenvalue.  Example: a free electron starts at t = 0 in the momentum eigenstate | p > = eipx/ℏ.  Its time evolution
is | p(t) > = eipx/ℏ e–ip²t/2mℏ.  This differs from | p > by the phase factor e–ip²t/2mℏ but it clearly still returns the same 
eigenvalue p when hit with the momentum operator (–i/ℏ)∂/∂x! 

Problem 2 : Relativistic Correction to 1D-SHO™	 Qual Classique

At the beginning of §6.3, Griffiths provides a nice little table (Table 6.1) of the approximate size of the primary 
corrections to the simple central-Coulomb-only-Hamiltonian that we used to get the Bohr wavefunctions and 
associated energy spectrum of the hydrogen atom.  I will leave it to you to read the sections of Chapter 6 that 
derive these corrections as we have discussed their physical origin already and there are no new tricks to learn.  
One of them is a relativistic correction.  Remarkably, it is of similar magnitude and almost the same form as the 
spin-orbit correction, so the two are usually bundled together as the fine structure correction.  It is derived in 
§6.3.1.

To learn how to do the relativistic correction, let’s do a different one!  Calculate the lowest-order (of 
perturbation theory) relativistic correction to the energy levels En of the 1D harmonic oscillator.  You may start 
with Griffiths equation 6.53 as long as you read its derivation (it might appear on an exam). 

 If [Q, H] = 0 and we place the system in an eigenstate | q > of Q,  
it will remain in that eigenstate.



________________________________________________________________________________________
Commutators in a Nutshell

What are commutators [A,B] good for?  We can boil it down to three essentials.  Assuming in each case that A 
and B are Hermitian operators associated with observables A and B (i.e. are operators of physical interest!),

	 • COMPATIBLE OBSERVABLES

	 	 [A,B] = 0 means that A and B share a set of eigenstates are so are compatible observables.
	 	 Compatibility means that if you start in an eigenstate of A, then measure B, then measure A again,
	 	 you will discover that you are still in the same exact same eigenstate of A in which you started.

	 	 For non-commuting observables, the Heisenberg uncertainty principle quantifies just how 
	 	 incompatible they are: 

	 	 	 	 σ Aσ B ≥ 1
2i

Â, B̂⎡⎣ ⎤⎦

	 • CONSTANTS OF MOTION 

	 	 As we just reviewed, observables that have no intrinsic time-dependence and commute with the 
	 	 Hamiltonian of a system have constant expectation values and produce good quantum numbers.

	 • LADDER OPERATORS → Quantized Spectra

________________________________________________________________________________________

Problem 3 : Ladder Operators on a Desert Island → A General Treatment

QM textbooks present ladder (a.k.a. raising & lowering) operators on a case-by-case basis.  They can instead be 
presented in a unified fashion, which makes it easier to see the “big picture” and to rebuild them from scratch.  
Let’s use the generic notation Λ for a ladder operator.  (The symbol Λ is “L” in greek and it even looks like a 
ladder!)  We don’t know in advance if Λ is raising or lowering so we will leave off the ± subscript for most of 
our work.  Also, feel free to leave off the hats on the operator symbols as I have done in this paragraph: it is 
perfectly clear which symbols are operators.

By definition, a ladder operator Λ is associated with some other operator Q and its eigenstates | q >.  
Each eigenstate state | q > has eigenvalue q and is assumed to be normalized.  Now here is the definition of a 
ladder operator Λ associated with Q : 

	 	 Words: When Λ operates on a normalized eigenstate | q > of Q, 
	 	 	 	 the result is a different normalized eigenstate | q+c > of Q. 

	 	 Math:   Λ̂ q = q + c      where     1= q q = q + c q + c  

(a)  The definition Λ̂ q = q + c  of the raising/lowering property is equivalent to the expression

	 	 	 Q̂ Λ q( ) = something1 Λ something2( ) .  

What are the two somethings?  NOTE: This is the starting definition in most books for “Λ is a ladder operator”.

(b)  Show that Q̂ Λ q( ) = something1 Λ something2( )  is equivalent to this third statement: 

	 	 	 Q̂, Λ̂⎡⎣ ⎤⎦ = c Λ̂    where both sides are assumed to be acting on an eigenstate q  of Q̂  (see note1)

1  This caveat is not necessary if Q is a Hermitian operator, e.g. if Q is associated with a physical observable.  



This is the important one!  To prove the equivalence of (a) and (b), I find it easier to work backwards, i.e. start 
with the commutator relation (b) then derive the “something” relation (a); since each step of your (really short 
& simple) proof will be an equivalence, you will have trivially proved that the two statements are equivalent. 

OKAY!  We are now ready to do some desert-island work, i.e. derive things without reference materials!  
In QM, ladder operators appear mostly in two contexts: 
	 	 ● angular momentum component eigenstates, where Q̂ = L̂z  or Ŝz  or Ĵz
	 	 ● energy eigenstates, where Q̂ = Ĥ = the Hamiltonian
(There is at least one other example of a ladder operator but it is rare; if you find others let me know!)  

To Be Continued on Homework 9. 



Let’s start with the first one, Q̂ = L̂z , since it is familiar.

(c)  With one operation, show that if Q is a Hermitian operator, Q̂, Λ̂⎡⎣ ⎤⎦ = c Λ̂  implies two things:
that c is real and that Q̂, Λ̂†⎡⎣ ⎤⎦ = −c Λ̂† .  This means that Λ and its adjoint Λ†  form a raising & lowering pair!

REMEMBER: We showed that the completely general Inner Product Space notation, 
	 	 (1) ψ  = a state in the IPS

	 	 (2) Q̂  = an operator on a state in the IPS that produces a state in the IPS

	 	 (3) ψ 1 ψ 2  = the inner product of the ……. , that maps two states onto a scalar

	 	 (4) ψ = en en ψ
all n
∑  = the completeness relation showing that all states in the IPS can be written as 

	 	 	 	 a linear combination of orthonormal states en{ }  in the IPS 

Shankar page 203 § 7.4 The Oscillator in the Energy Basis AND 25-26 in §1.6 The Adjoint of an Operator

Case 1 : Angular Momentum  Q̂ = L̂ z 

Our task is to figure out the ladder operator Λ for Q = Lz.  QM textbooks start by telling us what Λ± is, then go 
on to demonstrate that it does indeed raise / lower an Lz eigenstate to the one with the next higher / lower
eigenvalue mℏ.  Let’s work backwards instead: Years later, we’ve completely forgotten the form of Λ±, but we 
know it exists and we need it!  Our starting point will be the commutator form of the definition of Λ : 

	 	 Q̂, Λ̂⎡⎣ ⎤⎦ = c Λ̂

The reason this form is so useful for finding Λ is that Λ doesn’t commute with Q.  Think through all the 
commutators you have learned in QM ... MOST of them are zero!  There are only a few that are non-zero.  Once 
you have a Q, you will pretty quickly figure out what Λ has to be built from!  

(Will you be able to derive the boxed relation on a desert island?  ABSOLUTELY, and here’s why: because you 
NOW KNOW THAT IT EXISTS, i.e. that a COMMUTATOR FORM of the Ladder-Op Definition exists, so you 
will know to LOOK FOR IT on your desert island.)  

(d)  You are trying to find an operator Λ that will satisfy [Lz, Λ] = c Λ for some scalar c.  As noted above, that 
means Λ doesn’t commute with Lz.  How many operators can you think of that don’t commute with Lz, and 
what are their commutation relations with Lz?  Write them down.  IMPORTANT: Don’t go searching very far … 
you only need two in this case, and they are the most obvious ones … there are more operators that don’t 
commute with Lz but there is no need to write them all down if your first two guesses are correct ...  
ALWAYS TRY THE OBVIOUS / EASY THINGS FIRST. 

(e)  For the two obvious operators you chose (call them A and B), write down their individual commutation 
relations with Lz (one line for [Lz, A] and one line for [Lz, B] ... then stare at those two lines and see if you can 
find some linear combination of A and B from which you can build a Λ where [Lz, Λ] = c Λ. Serious 
suggestion: of course you know the answer, but do try something that doesn’t work.  You learn way more from 
playing with results or strategies that fail than ones that succeed!  THIS IS WHY PH.D.s TAKE 5-7 YEARS. 

(f)  You have found a Λ

Problem 4 : Ladder Operators OLD OLD OLD	 adapted from Griffiths 4.18

We now continue with the angular momentum commutator calculations we were doing in Discussion 13.  



We had the fundamental commutators of angular momentum worked out : 

	 	 [L2,Lz ]= [L
2,Lx ]= [L

2,Ly ]= 0      but     
 

[Lx ,Ly ]= i!Lz ,    etc

We also defined the ladder operators L± a.k.a. the raising and lowering operators : 

	 	 L± ≡ Lx ± i Ly   with key commutators L2,L±⎡⎣ ⎤⎦ = 0    and   
 

Lz ,L±⎡⎣ ⎤⎦ = ±!L±

The main utility of the ladder operators is that they bump up or down the m quantum number of an L²,Lz 
eigenstate by 1 unit.  Let’s get that in a boxed  L

2 = L±L∓ + Lz
2 ∓ "Lz formula: if ψ l

m  is an eigenstate of L2  and Lz 
with eigenvalues  l(l +1)!

2  and  m!  respectively, then 

	 	
 
L± ψ l

m = ± !ψ l
m±1    ⇐   L+ raises the m value by 1 and L– lowers it by 1.

That’s how far we got in Discussion 13.  Onwards!

(a)  Clearly, L2 = Lx
2 + Ly

2 + Lz
2 .  Prove that .  (You will need it in the next part).

(b)  



last week : 1D SHO setup

(b)  Consider the 1D-SHO ™ with Hamiltonian 

	 	
 
H (x) = !ω

2
ξ 2 − d 2

dξ 2
⎛
⎝⎜

⎞
⎠⎟

   where   ξ ≡ x
x0

 and 
 
x0 ≡

!
mω

 and m, ω are known constants.

For convenience, assume we are working in units where x0 = 1 (which is always possible!) ☺︎ 

____________________________________________

last week : conclusion missing

(d)  Now ask yourself this immense question: 

What are the good quantum numbers for atomic electrons? 

Hmm! We’ve seen tables of elements where spectroscopic notation  
2S+1LJ  is used to specify the ground state.  

To understand why this notation is used, you must calculate 6 commutators: 

	 (i)  [
!
L ⋅
!
S,
!
L]       (ii)  [

!
L ⋅
!
S,
!
S]       (iii)  [

!
L ⋅
!
S,
!
J ]       (iv)  [

!
L ⋅
!
S, L2 ]       (v)  [

!
L ⋅
!
S, S2 ]     (vi)  [

!
L ⋅
!
S, J 2 ]

Please do not repeat algebra unnecessarily!  Use symmetries / similarities between these various objects to 
argue things like “since A,B have the same relations as C,D, I can use my result for A,B directly for C,D too”.


