
Physics 487 – Homework #5	 due Friday 1 pm

You may use anything from the 486 final formula sheets without derivation
… but do try to see how far you can get on your own on your Desert Island. ☺︎ 
You may also use wolframalpha.com or similar tool to evaluate your integrals 

after you set the up in a form that can be directly entered into such tools.

Here are the perturbation theory (non-degenerate, time-independent) results we introduced in discussion 5 and 
will prove in lecture.  If you have 

	 • a “zeroth-order” Hamiltonian H0 	 	 that has exact eigenvalues En
(0){ }  and eigenstates n(0){ } , 

	 • an actual Hamiltonian H = H0 + ′H   	 where ′H  is a small correction to H0 (a “perturbation”,  ′H ≪ H0 ),

	 • a series expansion of H eigenvalues: 	 En = En
(0) + En

(1) + En
(2) + ...  for each n where  En

(0) ≫ En
(1) ≫ En

(2) ≫ ...

	 • & a series expansion of H eigenstates:	 n = n(0) + n(1) + n(2) + ...  for each n, where  n
(0) ≫ n(1) ≫ ...

then as long as 
	 • the exact eigenstates n(0){ }  are non-degenerate and 
	 • the Hamiltonian H = H0 + ′H  has no explicit time-dependence,  
then 1st-order and 2nd-order corrections to each unperturbed energy En / unperturbed eigenstate n(0)  are: 

	 	 En
(1) = n(0) ′H n(0)  = the expectation value of the perturbation H′ in the nth exact state.

	 	 En
(2) =

m(0) ′H n(0)
2

En
(0) − Em

(0)
m≠n
∑ 	 	 	 n(1) =

m(0) ′H n(0)

En
(0) − Em

(0)
m≠n
∑ m(0)

Problem 1 : Two Identical Bosons in ∞ Well, now with a weak interaction between them 	 Griffiths 6.3

Two identical bosons are placed in an infinite square well with V = 0 from x = 0 to x = a, and V = ∞ everywhere 
else.  The bosons interact weakly with one another, via the potential

	 	 VINT(x1, x2 ) = −aV0δ (x1 − x2 )

where V0 is a constant with dimensions of energy.  

(a)  First, ignoring the interaction VINT between the particles, find the ground state and the first excited state — 
both the wave functions and the associated energies.  (This is our standard Sandbox system, so by all means just 
write down what the single-particle wavefunctions without any/much derivation.) 

(b)  Use first-order perturbation theory to estimate the effect of the particle-particle interaction above on the 
energies of the ground state and the first excited state. 

Problem 2 : Spherical Harmonic Oscillator + Spin-Orbit Interaction	

Consider a particle in a spherically-symmetric harmonic oscillator potential : the Hamiltonian is

	 	 H0 =
p2

2m
+ mω

2r2

2
   where m and ω are known constants.



(a)  Using separation of variables in spherical coordinates, in the form ψ (r,θ ,φ) = Yl
m (θ ,φ)R(r)  that always 

works for a central potential V(r), find the radial equation for R(r) and solve it for 

	 • the ground state of the s-shell (l = 0) and 

	 • the ground state of the p-shell (l = 1).  

You do NOT have to normalize your R(r) functions.  

(b1) Obtain the energies and degeneracies of the lowest-lying s-shell and p-shell states you have just found.  

(b2) There is another way of thinking / calculating the 3D SHO : using separation of variables in Cartesian 
coordinates.  Since the kinetic energy is proportional to p2 = px

2 + py
2 + pz

2  and the potential energy is  
proportional to r2 = x2 + y2 + z2 ,  the Hamiltonian is the sum of three identical 1D SHO Hamiltonians: 
H 3D = H1D,x + H1D,y + H1D,z .    The energy spectrum of a 1D SHO is  En = n +1/ 2( )!ω , so the energy of a 3D 
SHO is 

 
Enxnynz = nx + ny + nz + 3 / 2( )!ω .  From this way of thinking, find the energies and degeneracies of the 

ground state and 1st-excited state(s) of the 3D SHO.  Comparing your results to (b1) should provide happiness!

(c)  Suppose the particle in the SHO is an electron.  Let’s add to the Hamiltonian a spin-orbit interaction term,

	 	
 
VSO =

!2

2m2c2
1
r
dVSHO(r)

dr
"
L ⋅
"
S        where       VSHO =

mω 2r2

2

Use perturbation theory to estimate how the SHO’s lowest two energy eigenvalues are altered by the addition of 
the (small) spin-orbit interaction.  
TECHNIQUE : This is your first problem involving a spin-orbit interaction so it’s time to learn a new 
technique!  The issue is how to evaluate the term  

!
L ⋅
!
S .  If you are working with a particle in an state 

LS ML MS , you have have the eigenvalues of L2,S2,Lz ,  and Sz  at your disposal.  However, 

 
!
L ⋅
!
S = LxSx + LySy + LzSz , and your particle LS ML MS  is not in an eigenstate of those x or y components.  

Oh dear!  The way to go is to switch bases and work with your particle in a state LS J MJ  instead, where 
 
!
J ≡
!
L +
!
S .  Now you have the eigenvalues L2,S2, J 2,  and Jz  at your disposal.  You can obtain  

!
L ⋅
!
S  in terms of 

these eigenvalues by expanding the right-hand-side of 
 
J 2 =

!
L +
!
S
2

.  (The formula you require can be found in 
§6.3.2 of Griffiths or Ch.XII §23 of Messiah.) 

Problem 3 : δ-Function Bump in the ∞ Square Well ™	 adapted from Griffiths 6.1 & 6.4(a)

Suppose we put a δ-function bump in the center of an infinite square well that runs from x = 0 to x = a.  
The bump adds the following term to the Hamiltonian : 

	 	 ′H =αδ x − a
2

⎛
⎝⎜

⎞
⎠⎟   where α is a constant.  

You can use without proof any results for the unperturbed InfiniteWell™ as you have worked with it so much.

(a)  Find the first-order energy corrections En
(1)  caused by the bump.  Hint: you should find that the bump has a 

very different effect on the energy for even and odd values of n.  

(b)  Now let’s calculate the first-order modifications that the bump produces in the energy eigenstates rather than 
the energy eigenvalues.  The energy eigenstates of the unperturbed ∞ well are n(0) .   First-order perturbation
theory provides a correction n(1)  for each unperturbed state n(0) , given as a sum over contributions from the 
other unperturbed states m(0)  :



	 	  n(1) =
m(0) ′H n(0)

En
(0) − Em

(0)
m≠n
∑ m(0) .

Calculate the first three non-zero terms in this sum for the ground state (n = 1).  

(c)  Calculate the second-order energy corrections En
(2)  caused by the bump.  You will obtain an infinite sum 

that you can actually do, which is rather wondrous.  The main trick is to use

	 	 1
a2 − b2

= 1
2a

1
a + b

+ 1
a − b

⎛
⎝⎜

⎞
⎠⎟

to rewrite the sum you have to do.  If you write out explicitly (in actual numbers) the first few terms in the 
resulting series, you will see what happens.  It will be very pleasing. ☺︎ 

Problem 4 : Helium Ground State Energy	

(a)  The helium atom consists of two electrons bound by a doubly-charged nucleus.  The most crude 
approximation you can make to its Hamiltonian is the sum of two hydrogen-like Hamiltonians, i.e. one for each 
of the two electrons, treating them as if they are interacting with just the Z (nuclear charge) = 2 nucleus and not 
at all with each other.  Making use of the hydrogen-like solutions on the formula sheet and/or the hydrogen-like 
energy formula that will shortly be added to the formula sheet, 

	 	 En = − (Zα )
2

2n2
(mec

2 ) ,

calculate the energy of the helium ground state in the approximation that Helium ≈ two non-interacting 
electrons sitting in the field of a Z=2 nucleus.  Express your result in eV.  

(b)  The measured energy of the helium ground state is –79 eV, so our two-non-interacting-particle 
approximation is not very accurate (almost 40% off the true value).  Happily, almost all of the discrepancy with 
experiment can be accounted for by adding an electron-electron repulsion term, Vee, to the Hamiltonian and 
calculating the energy shift it produces in first-order perturbation theory.  Off you go!  After you apply your 
correction you should be about 5% away from the experimental ground state energy instead of 40% ... an 
excellent correction indeed! 


