Physics 487 - Homework \#3

All solutions must clearly show the steps and/or reasoning you used to arrive at your result. You will lose points for poorly written solutions or incorrect reasoning. Answers given without explanation will not be graded: our master rule for homework and exams is NO WORK = NO POINTS. However you may always use any relation on the 3D-calculus and 1D-math formula sheets without proof; both are posted in the same place you found this homework. Finally please write your NAME and DISCUSSION SECTION on your solutions.

You may use anything from the $\mathbf{4 8 6}$ final formula sheets without derivation ... but do try to see how far you can get on your own on your Desert Island. © You may also use wolframalpha.com or similar tool to evaluate your integrals after you set the up in a form that can be directly entered into such tools.

Problem 1 : Clebsch-Gordan

Add a spin-3/2 particle and a spin-1 particle to build the state $|J, M\rangle=\left|\frac{3}{2},+\frac{1}{2}\right\rangle_{J, M}$ from $\left|m_{1}, m_{2}\right\rangle$ states.
Calculate the result using the A, B, C method you used in Discussion 3 Question 1, doing only the steps you need (!) to reach the state you want. See the Discussion 3 Question 1 solution if you need guidance, and, of course, check your answer against a Clebsch-Gordan (CG) table, e.g. the one provided with Discussion 3.

That is all. Only one problem this time, to keep the due-date schedule the same.

