Phys 487 Discussion 15 - Sudden, Adiabatic, Magnetic Moments

Given
$$\bullet H(t) = H^{(0)} + H'(t)$$
, $\bullet \left\{ E_n^{(0)}, |n^{(0)}\rangle \right\} = \text{the eigen-* of } H^{(0)} \bullet \text{ initial state } |\psi(t=0)\rangle = |i^{(0)}\rangle$
then $||\psi(t)\rangle = \sum_n c_n(t) e^{-i\omega_n t} |n^{(0)}\rangle$ with $i\hbar \dot{c}_f(t) = \sum_n H'_{fn} e^{i\omega_{fn} t} c_n(t)$ $\bullet \omega_{fn} \equiv \left(E_f^{(0)} - E_n^{(0)}\right)/\hbar$
 $\bullet H'_{fn} \equiv \langle f^{(0)} | H' | n^{(0)}\rangle$
& to $\underline{1^{\text{st order}}}$ in $H' \ll H^{(0)}$, $c_f(t) \approx \delta_{fi} + \frac{1}{i\hbar} \int_0^t H'_{fi}(t') e^{i\omega_{fi} t'} dt' \to P_{i \to f} = |c_f(t)|^2$
 \bullet Fermi's Golden Rule : $R_{i \to f} \equiv \frac{P_{i \to f}}{t} = \frac{2\pi}{\hbar} |V_{fi}|^2 \rho(E_f)$ \bullet Larmor frequency $\omega = \gamma B$

Problem 1 : Atom in a rotated B field

An atom with $J = \frac{1}{2}$, $m_J = \frac{1}{2}$ is in a uniform magnetic field.

(a) **Suddenly** the field is rotated by $\phi = 60^{\circ}$. Find the probability that the atom is in the sublevels $m_J = +\frac{1}{2}$ or $m_J = -\frac{1}{2}$, relative to the new field direction, immediately after the change in field direction.

(b) Suppose the field were instead rotated **very slowly** from its initial orientation to $\phi = 60^{\circ}$. In the limit of an infinitely slow rotation, what then would be the probability that the atom is in the sublevels $m_J = \pm \frac{1}{2}$ relative to the new field direction once the field finally reaches its new $\phi=60^{\circ}$ direction?

Problem 2 : Hyperfine interaction

An isolated hydrogen atom has a hyperfine interaction between the proton and electron spins (S_1 and S_2 , respective) of the form $J S_1 \cdot S_2$. The two spins have magnetic moments αS_1 and βS_2 respectively, and the system is in a uniform static magnetic field **B**. Consider only the orbital ground state.

(a) Find the exact energy eigenvalues of this system and sketch the hyperfine splitting spectrum as a function of magnetic field.

(b) Calculate the eigenstates associated with each level.

NOTE: This is exactly how the qual problem is written. I don't particularly *like* how it is written (I think it is sloppy with its phrasing in places), and I don't think we've used the exact phrase "orbital ground state" before ... but that's always going to be the case: different books/groups/people, different phrasing. I'm sure you can figure out what is meant. Also, if you're not sure what technique to use in a qual problem, or in real life(!!!), just **do! something! reasonable!** Explain what you are doing, e.g. "I will assume that ..., in which case ... This assumption is fairly likely because ... (example) ..." That's what physicists do: turn chaos into something reasonable. © For example :

Problem 1': Atom in a rotated B field again

Return to the situation described in Problem 1. What **time scales** would you compare with each other to decide if it is appropriate to apply the adiabatic approximation (part b) or sudden approximation (part a) to answer this question?

Qual problem

Qual problem