Phys 487 Discussion 14 - Selection Rules

Given • $H(t)=H^{(0)}+H^{\prime}(t), \quad \bullet\left\{E_{n}^{(0)},\left|n^{(0)}\right\rangle\right\}=$ the eigen-* of $H^{(0)} \quad \bullet$ initial state $|\psi(t=0)\rangle=\left|i^{(0)}\right\rangle$

$$
\text { then }|\psi(t)\rangle=\sum_{n} c_{n}(t) e^{-i \omega_{n} t}\left|n^{(0)}\right\rangle \text { with } i \hbar \dot{c}_{f}(t)=\sum_{n} H_{f n}^{\prime} e^{i \omega_{f n} t} c_{n}(t)
$$

$$
\text { - } \omega_{f n} \equiv\left(E_{f}^{(0)}-E_{n}^{(0)}\right) / \hbar
$$

$$
\text { - } H_{f n}^{\prime} \equiv\left\langle f^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle
$$

$\&$ to $\underline{1 \text { st }}$ order in $H^{\prime} \ll H^{(0)}, \quad c_{f}(t) \approx \delta_{f i}+\frac{1}{i \hbar} \int_{0}^{t} H_{f i}^{\prime}\left(t^{\prime}\right) e^{i \omega_{f i^{\prime}}} d t^{\prime} \quad \rightarrow \quad P_{i \rightarrow f}=\left|c_{f}(t)\right|^{2}$

- Fermi's Golden Rule : $\quad R_{i \rightarrow f} \equiv \frac{P_{i \rightarrow f}}{t}=\frac{2 \pi}{\hbar}\left|V_{f i}\right|^{2} \rho\left(E_{f}\right)$

Problem 1: E1 Transitions

As we saw in class, the time-dependent perturbation $H^{\prime}(\vec{r}, t)$ that is produced by an
EM wave at lowest order in the small parameter $\vec{k} \cdot \vec{r} \approx \underline{r / \lambda \ll 1}$ (typical situation in atomic physics) is the "E1" or "Electric Dipole" term, which comes from approximating the EM wave's electric field as constant over space, i.e. $\vec{E}(\vec{r}) \approx \vec{E}_{0}$. This is clearly reasonable when the E-field's wavelength is enormous compared to the tiny size of the atom! For such a constant field, using the Hermitian perturbation form

$$
H^{\prime}(\vec{r}, t)=V(\vec{r}) e^{i \omega t}+V^{*}(\vec{r}) e^{-i \omega t}
$$

that we used to derive Fermi's Golden Rule, we obtained

$$
V^{\mathrm{El}}(\vec{r})=-q \frac{\vec{E}_{0}}{2} \cdot \vec{r}=-\frac{q}{2}\left(E_{0 x} x+E_{0 y} y+E_{0 z} z\right) .
$$

Our study of time-dependent perturbation theory has taught us that a transition between atomic states i and f can only occur if $V_{f i}=\left\langle n_{f} l_{f} m_{f}\right| V(\vec{r})\left|n_{i} l_{i} m_{i}\right\rangle$ is not zero. For an $\mathbf{E} 1$ transition to be allowed, this transition matrix element must be non-zero for $V(\vec{r}) \sim x$ and/or y and/or z (corresponding to the 3 possible linear-polarization directions from which any EM wave can be built).
(a) As we said in class, we would really like to avoid integrating $V_{f i}=\left\langle n_{f} l_{f} m_{f}\right| V(\vec{r})\left|n_{i} l_{i} m_{i}\right\rangle \ldots$ which we can do by expressing x, y, and z in terms of different operators, specifically those for which the $|n l m\rangle$ states are eigenstates. Those operators are L^{2}, L_{z}, and the atom's Hamiltonian. These fabulous commutators will save us :

$$
\left[L_{z}, x\right]=i \hbar y, \quad\left[L_{z}, x\right]=-i \hbar x, \quad\left[L_{z}, x\right]=0
$$

These are not the usual commutators for angular momentum! You have to go back to the definition $\vec{L}=\vec{r} \times \vec{p}$ and evaluate L_{z} in cartesian coordinates. First, prove this:

$$
[A B, C]=A[B, C]+[A, C] B \quad \odot \text { USEFUL! } \odot
$$

(It is incredibly useful, but not worth memorizing since it takes 1 line to derive!) Then prove the three commutation relations above.
(b) Using one of those commutators to replace z, show that for $\vec{E}_{0} \| \hat{z}, V_{f i} \sim\left\langle n_{f} l_{f} m_{f}\right| z\left|n_{i} l_{i} m_{i}\right\rangle=0-$ i.e. no

E1 transition is possible from $i \rightarrow f-$ unless $m_{f}-m_{i} \equiv \boldsymbol{\Delta} \boldsymbol{m}=\mathbf{0}$. This is our first E1 selection rule!
IMPORTANT: Remember that $x, y, z, p_{x}, p_{y}, p_{z}, L_{x}, L_{y}, L_{z}, \ldots$ are all Hermitian operators, which basically allows them to "act to the left" as long as you watch out for *complex conjugates*. We did a partial selectionrule calculation in class, the steps we completed may help you. If this is unclear, great time to review Hermitian operators \rightarrow ask your instructor!
(c) Repeat this exercise for $\vec{E}_{0} \| \hat{x}$ and $\vec{E}_{0} \| \hat{y}$. Combine your results to show that waves with such polarizations can only produce E1 transitions between states with $\boldsymbol{\Delta m}=\mathbf{\pm 1}$. That's our second selection rule. NOTE: This is the one we started deriving in class but didn't finish, you might find our partial work helpful.
(d) Finally, what about the l quantum number? Take this rather extraordinary commutator as given :

$$
\left[L^{2},\left[L^{2}, \vec{r}\right]\right]=2 \hbar^{2}\left(\vec{r} L^{2}+L^{2} \vec{r}\right)
$$

(I"m sure you can derive it, but not now!) Evaluate the transition matrix element

$$
\left\langle n^{\prime} l^{\prime} m^{\prime}\right|\left[L^{2},\left[L^{2}, \vec{r}\right]\right]|n l m\rangle
$$

and deduce that allowed E1 transitions - i.e., those with $\left\langle n^{\prime} l^{\prime} m^{\prime}\right| \vec{r}|n l m\rangle \neq 0$ - require

$$
2\left[l(l+1)+l^{\prime}\left(l^{\prime}+1\right)\right]=\left[l^{\prime}\left(l^{\prime}+1\right)-l(l+1)\right]^{2} .
$$

Finally, show that E1 transitions require $\boldsymbol{\Delta l} \boldsymbol{l}= \pm \mathbf{1}$. This is our best evidence so far that photons have spin 1.

Problem 2 : Higher Order Transitions

(a) Starting with the electric field of a plane wave, $\vec{E}(\vec{r}, t)=E_{0} \cos (\vec{k} \cdot \vec{r}-\omega t)$, make the atomic-scale approximation $\vec{k} \cdot \vec{r} \ll 1$ to one more order than before, so that $\vec{E}(\vec{r})$ is not purely constant. The answer is in the footnote ${ }^{1}$ as a check.
(b) Construct the corresponding time-dependent perturbation $H^{\prime}(\vec{r}, t)=V(\vec{r}) e^{i \omega t}+V^{*}(\vec{r}) e^{-i \omega t}$ for this new order of position-dependence, and show that transitions of this order ($\mathbf{E} 2=$ Electric Quadrupole) require

$$
V_{f i}^{\mathrm{E} 2} \sim\left\langle n_{f} l_{f} m_{f}\right|(\hat{k} \cdot \vec{r})\left(\hat{E}_{0} \cdot \vec{r}\right)\left|n_{i} l_{i} m_{i}\right\rangle \neq 0
$$

i.e. we need $\left\langle n_{f} l_{f} m_{f}\right| x_{a} x_{b}\left|n_{i} l_{i} m_{i}\right\rangle \neq 0$ for at least one choice of components x_{a} and x_{b}.

FYI: Do you remember the form of the quadrupole moment of a charge distribution from E\&M? It is a tensor with exactly such terms $x_{a} x_{b}$ as weighting factors : $Q_{a b}=\int d q\left(3 x_{a} x_{b}-r^{2} \delta_{a b}\right)$ where $r^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$.

[^0]
[^0]: ${ }^{1} \vec{E}(\vec{r}, t) \approx \vec{E}_{0}[\cos (\omega t)+(\vec{k} \cdot \vec{r}) \sin (\omega t)]$

