Phys 487 Discussion 13 – Fermi’s Golden Rule

Given

\[H(t) = H^{(0)} + H'(t), \]

\[\{ E^{(0)}_n, |n^{(0)}\rangle \} = \text{the eigen-* of } H^{(0)} \]

\[\text{initial state } |\psi(t=0)\rangle = |i^{(0)}\rangle \]

then

\[|\psi(t)\rangle = \sum_n c_n(t) e^{-i\omega t} |n^{(0)}\rangle \]

\[\text{with } i\hbar \dot{c}_f(t) = \sum_n H'_{fn} e^{i\omega_f t} c_n(t) \]

\[\text{and to 1st order in } H' \ll H^{(0)}, \]

\[c_f(t) \approx \delta_{fi} + \frac{1}{i\hbar} \int_0^t H'_{fi}(t') e^{i\omega_f t'} dt' \]

\[\implies P_{i\rightarrow f} = |c_f(t)|^2 \]

Problem 1: Fermi’s Golden Rule for a constant perturbation

The simplest time-dependent perturbation is a constant potential \(V \) that just “turns on” at some time \(t = 0 \):

\[V(t) = 0 \text{ for } t < 0 \quad \& \quad V(t) = V = \text{constant for } t \geq 0. \]

Suppose we have a system with a solvable unperturbed Hamiltonian \(H_0 \) plus the time-dependent perturbation \(V(t) \) given above. What is the transition probability \(P_{i\rightarrow f} = |c_f(t)|^2 \) to first order?

(a) Derive the following result:

\[P_{i\rightarrow f} = \frac{|V_{\beta}|^2}{\hbar^2} \left[\frac{\sin(\omega_{\beta} t / 2)}{\omega_{\beta} t / 2} \right]^2 t^2 \text{ for } i \neq f. \]

You will need the “half-angle formula” \(1 - \cos \theta = 2 \sin^2 \left(\theta / 2 \right) \).

(b) Prove the following weird but important Dirac delta-function relation:

\[\delta(ax) = \frac{\delta(x)}{a}. \]

(Think UNITS.)

(c) Prove that the following is a delta function:

\[\lim_{\omega \rightarrow 0} \frac{1}{\pi} \frac{\sin^2(ax)}{ax^2} = \delta(x). \]

(You will need \(\int_{-\infty}^{\infty} \sin^2 x / x^2 = \pi \).)

(d) Combining the above, show that the transition rate

\[R_{i\rightarrow f} \equiv \frac{P_{i\rightarrow f}}{t} = \frac{2\pi}{\hbar} |V_{\beta}|^2 \delta(E_f - E_i) \]

in the limit where energy is conserved, i.e. where \(E_f - E_i \rightarrow 0 \).

This relation is one form of Fermi’s Golden Rule for energy-conserving transitions.

(e) Is it reasonable to insist that energy is conserved despite the change in potential energy? Return to expression (a) and consider its dependence on \(\omega_{\beta} = \hbar(E_f - E_i) \). As you can quickly check with some sort of machine, the function \(\sin^2 x / x^2 \) is peaked at \(x = 0 \) and has a width of about \(\pi \). (It reaches \(0.4 \approx 1/2 \) at \(x = \pm \pi/2 \).) Given this info, what range of \(\omega_{\beta} \) values keeps the transition probability \(P_{i\rightarrow f} \) within a factor of about 2 of its maximum value? Your answer will involve time, \(t \). Does the range of probable transition frequencies increase or decrease with \(t \)?

(f) Hopefully what you found was that, as \(t \rightarrow \infty \), the width in reasonably-probable transition frequencies goes to zero. This is a very important result! What does \(t \) represent, exactly? Once you know, you can say something like this

“In the limit that the perturbation \(V(t) \) _____ (words)_____, the only transition frequency with any finite probability is \(\omega_{\beta} = _____ \), which means that energy is _____ in this limit.”

We have thus clarified the conditions under which part (d) is a valid result.
(g) You just found that energy is conserved more exactly in the transition from state i to state f as the time t that the perturbation has been ON increases. What relation involving a German name is this related to?

(h) The perturbation can never be on forever, i.e. we can never reach the limit $t \to \infty$, so there is always some non-zero range of final-state energies $E_f \approx E_i$ that can be reached from an initial-state energy E_i ... but a transition $E_i \to E_f$ can only occur if there a state with energy E_f actually exists. It is customary to inject information about the availability of final states into Fermi’s Golden Rule using the quantity $\rho(E_f) = \text{the density of final states} = \text{#states per unit energy}$. This quantity has units of 1/energy. The energy-conserving delta function $\delta(E_f - E_i)$ in our earlier version of Fermi’s Golden Rule also has units of 1/energy. To get the most familiar form of F.G.R., we simply replace the one-final-state-only δ-function with the density of states:

$$R_{i \to f} \equiv \frac{P_{i \to f}}{t} = \frac{2\pi}{\hbar} |V_{fi}|^2 \rho(E_f) \bigg|_{E_f \approx E_i}$$

Fermi’s Golden Rule for energy-conserving transitions.