Phys 487 Discussion 12 — Time-Dependent PT with 2-State Systems

Same formula summary as last week : if our Hamiltonian H consists of a time-independent part Ho with known

eigenvalues E.”

,and eigenstates |n(°)> plus and a much smaller time-dependent part H’, then we get the

following results :
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The first box is the solution form, the second box is the exact differential equation it must satisfy, and the third
box is the 1st-order perturbative solution. Some names: wy is called the transition frequency for going from
initial state i to final state f, while c«) is the transition amplitude for doing the same thing. The transition
probability that we are usually trying to calculate is

P, =| cf(t) |2

Problem 1 : Two-State hydrogen atom in electric field adapted from Griffiths 9.1

Systems with only two independent states are excellent sandboxes for playing around with time-dependent
potentials, e.g. you can write down all the matrix elements of H ],‘n since there are only four of them.

Let’s take a specific case. A hydrogen atom is placed in a time-dependent electric field E = E(1)Z .

(a) Calculate all four matrix elements H l} of the perturbation H’ = e E z between the ground state (n = 1)

and the quadruply degenerate first excited states (n = 2).

(b) Show that the diagonal elements H; of the perturbation are both zero for all five states.

» NOTE: There is only one integral to be done here, if you exploit oddness with respect to z; only one of the n

= 2 states is “accessible” from the ground state by a perturbation of this form, and therefore the system
functions as a two-state configuration — assuming transitions to higher excited states can be ignored.

(c) Itis very commonly the case that the diagonal elements H/; of a time-dependent perturbation are zero.
In this case, the exact differential equations

ihée, (t)= Y Hj, ¢, )
for the two coefficients ¢, (¢) and c,(¢) (using Griffiths’ notation for two states) reduce to two coupled

differential equations without summation signs. Show that the above reduces to these two in the case H; =0:
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These are Griffiths’” equation 9.13, on which the first part of his chapter 9 are based.



NOTATION CHANGE : We will henceforth stop placing a superscript © on the states and energies of the
unperturbed system. Reason? We are ALWAYS referring to the states of the unperturbed system in time-
dependent PT, so there is no reason to flag it with such notation. As we mentioned in class, the goal of time-
dependent PT is quite different from that of time-independent PT.

* t-indep. PT : calculate changes to the eigenenergies & eigenstates of Hoy produced by the perturbation H’
e t-dep. PT : calculate transition probabilities caused by H’ between states of the unperturbed system Hy

Problem 2 : Rabi flopping frequency adapted from Griffiths 9.7

A rare example of a system that can be solved exactly is the important case of a two-state problem with a
sinusoidal oscillating potential. The system is often an atom or a molecule, with two states of particular interest
or relevance ; the perturbation usually comes from an incident electromagnetic wave whose frequency w is
tuned to the transition frequency wap = (Ea-Ebv)/ht between the two states.

Here is a simplified expression for the sinusoidal perturbation V(7) cos(wt).after it is applied to a system with
two states a and b in the case that the driving frequency w is very close to the transition frequency wap : !
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(a) Solve the two coupled equations you obtained in problem 1(c) using the initial conditions c,(0)=1 and
¢,(0)=0 (i.e. the system starts in state a at time 7 = 0). Express your results for c,(¢) and ¢, (¢) in terms of

1
0, = 5\/ (a) -0, )2 + ( ‘Vab ‘ /7&)2 , called the Rabi flopping frequency. Answers in footnote?.

(b) Determine the transition probability P,_,, () and show that it never exceeds 1. Confirm that
c,(t) ‘2 +|cb () ‘2 =1 at all times. (What would it mean if that were not true? Ask if you’re not sure!)

(c) Check that P, (¢) reduces to the perturbation theory result
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when the perturbation is “small”, and state precisely what small means in this context, as a constraint on V.

(d) At what time does the system first return to its initial state?

1 Griffiths §9.1.3 shows how the approximation w = we=was is applied.
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