Phys 487 Discussion 12 - Time-Dependent PT with 2-State Systems

Same formula summary as last week : if our Hamiltonian H consists of a time-independent part H_{0} with known eigenvalues $E_{n}^{(0)}$ and eigenstates $\left|n^{(0)}\right\rangle$ plus and a much smaller time-dependent part H^{\prime}, then we get the following results :

Given • $H(t)=H^{(0)}+H^{\prime}(t), \quad \bullet\left\{E_{n}^{(0)},\left|n^{(0)}\right\rangle\right\}=$ the eigen-* of $H^{(0)} \quad \bullet$ initial state $|\psi(t=0)\rangle=\left|i^{(0)}\right\rangle$

then $|\psi(t)\rangle=\sum_{n} c_{n}(t) e^{-i \omega_{n} t}\left|n^{(0)}\right\rangle$ with $i \hbar \dot{c}_{f}(t)=\sum_{n} H_{f n}^{\prime} e^{i \omega_{f n} t} c_{n}(t)$

- $\omega_{f n} \equiv\left(E_{f}^{(0)}-E_{n}^{(0)}\right) / \hbar$
- $H_{f n}^{\prime} \equiv\left\langle f^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle$
$\&$ to $\underline{1^{\text {st }} \text { order }}$ in $H^{\prime} \ll H^{(0)}, \quad c_{f}(t) \approx \delta_{f i}+\frac{1}{i \hbar} \int_{0}^{t} H_{f i}^{\prime}\left(t^{\prime}\right) e^{i \omega_{f i} t^{\prime}} d t^{\prime}$
The first box is the solution form, the second box is the exact differential equation it must satisfy, and the third box is the $1^{\text {st }}$-order perturbative solution. Some names: $\omega_{f i}$ is called the transition frequency for going from initial state i to final state f, while $c_{f}(t)$ is the transition amplitude for doing the same thing. The transition probability that we are usually trying to calculate is

$$
P_{f \rightarrow i}=\left|c_{f}(t)\right|^{2}
$$

Problem 1: Two-State hydrogen atom in electric field

adapted from Griffiths 9.1
Systems with only two independent states are excellent sandboxes for playing around with time-dependent potentials, e.g. you can write down all the matrix elements of $H_{f n}^{\prime}$ since there are only four of them.

Let's take a specific case. A hydrogen atom is placed in a time-dependent electric field $\vec{E}=E(t) \hat{z}$.
(a) Calculate all four matrix elements $H_{i j}^{\prime}$ of the perturbation $H^{\prime}=e E z$ between the ground state $(n=1)$ and the quadruply degenerate first excited states $(n=2)$.
(b) Show that the diagonal elements $H_{i i}^{\prime}$ of the perturbation are both zero for all five states.

NOTE: There is only one integral to be done here, if you exploit oddness with respect to z; only one of the n $=2$ states is "accessible" from the ground state by a perturbation of this form, and therefore the system functions as a two-state configuration - assuming transitions to higher excited states can be ignored.
(c) It is very commonly the case that the diagonal elements $H_{i i}^{\prime}$ of a time-dependent perturbation are zero. In this case, the exact differential equations

$$
i \hbar \dot{c}_{f}(t)=\sum_{n} H_{f n}^{\prime} e^{i \omega_{f_{n}} t} c_{n}(t)
$$

for the two coefficients $c_{a}(t)$ and $c_{b}(t)$ (using Griffiths' notation for two states) reduce to two coupled differential equations without summation signs. Show that the above reduces to these two in the case $H_{i i}^{\prime}=0$:

$$
\dot{c}_{a}=\frac{1}{i \hbar} H_{a b}^{\prime} e^{-i \omega_{0} t} c_{b} \quad \text { and } \quad \dot{c}_{b}=\frac{1}{i \hbar} H_{b a}^{\prime} e^{i \omega_{0} t} c_{a}
$$

These are Griffiths' equation 9.13 , on which the first part of his chapter 9 are based.

NOTATION CHANGE : We will henceforth stop placing a superscript ${ }^{(0)}$ on the states and energies of the unperturbed system. Reason? We are ALWAYS referring to the states of the unperturbed system in timedependent PT, so there is no reason to flag it with such notation. As we mentioned in class, the goal of timedependent PT is quite different from that of time-independent PT.
$\bullet t$-indep. PT : calculate changes to the eigenenergies \& eigenstates of H_{0} produced by the perturbation H^{\prime}
$\bullet t$-dep. PT : calculate transition probabilities caused by H^{\prime} between states of the unperturbed system H_{0}

Problem 2: Rabi flopping frequency

adapted from Griffiths 9.7
A rare example of a system that can be solved exactly is the important case of a two-state problem with a sinusoidal oscillating potential. The system is often an atom or a molecule, with two states of particular interest or relevance ; the perturbation usually comes from an incident electromagnetic wave whose frequency ω is tuned to the transition frequency $\omega_{\mathrm{ab}}=\left(E_{\mathrm{a}}-E_{\mathrm{b}}\right) / \hbar$ between the two states.

Here is a simplified expression for the sinusoidal perturbation $V(\vec{r}) \cos (\omega t)$. after it is applied to a system with two states a and b in the case that the driving frequency ω is very close to the transition frequency $\omega_{\mathrm{ab}}:{ }^{1}$

$$
H_{b a}^{\prime}=\frac{V_{b a}}{2} e^{-i \omega t}, \quad H_{a b}^{\prime}=\frac{V_{a b}}{2} e^{i \omega t}, \quad H_{a a}^{\prime}=H_{b b}^{\prime}=0 \quad \text { with } \quad V_{a b} \equiv\left\langle\psi_{a}\right| V\left|\psi_{b}\right\rangle
$$

(a) Solve the two coupled equations you obtained in problem 1(c) using the initial conditions $c_{a}(0)=1$ and $c_{b}(0)=0$ (i.e. the system starts in state a at time $t=0$). Express your results for $c_{a}(t)$ and $c_{b}(t)$ in terms of

$$
\omega_{r} \equiv \frac{1}{2} \sqrt{\left(\omega-\omega_{a b}\right)^{2}+\left(\left|V_{a b}\right| / \hbar\right)^{2}} \text {, called the Rabi flopping frequency. Answers in footnote }{ }^{2}
$$

(b) Determine the transition probability $P_{a \rightarrow b}(t)$ and show that it never exceeds 1. Confirm that $\left|c_{a}(t)\right|^{2}+\left|c_{b}(t)\right|^{2}=1$ at all times. (What would it mean if that were not true? Ask if you're not sure!)
(c) Check that $P_{a \rightarrow b}(t)$ reduces to the perturbation theory result

$$
P_{a \rightarrow b}(t)=\left|c_{b}(t)\right|^{2} \approx \frac{\left|V_{a b}\right|^{2} \sin ^{2}\left[\left(\omega_{a b}-\omega\right) t / 2\right]}{\left(\omega_{a b}-\omega\right)^{2}}
$$

when the perturbation is "small", and state precisely what small means in this context, as a constraint on V.
(d) At what time does the system first return to its initial state?

[^0]
[^0]: ${ }^{1}$ Griffiths $\S 9.1 .3$ shows how the approximation $\omega \approx \omega_{0} \equiv \omega_{\mathrm{ab}}$ is applied.
 ${ }^{2} \mathbf{Q 2}(\mathbf{a})$ results : $c_{b}(t)=-\frac{i}{2 \hbar \omega_{r}} V_{b a} e^{i\left(\omega_{a b}-\omega\right) t / 2} \sin \left(\omega_{r} t\right), \quad c_{a}(t)=e^{i\left(\omega-\omega_{a b}\right) t / 2}\left[\cos \left(\omega_{r} t\right)+i\left(\frac{\omega_{a b}-\omega}{2 \omega_{r}}\right) \sin \left(\omega_{r} t\right)\right]$.

