
Phys 487 Discussion 12 – Time-Dependent PT with 2-State Systems
Same formula summary as last week : if our Hamiltonian H consists of a time-independent part H0 with known 
eigenvalues En

(0)  and eigenstates n(0)  plus and a much smaller time-dependent part H’, then we get the 

following results :   

Given    ● H (t) = H (0) + ′H (t) , 	 	 ● En
(0), n(0){ }  = the eigen-* of H (0) 	 ● initial state ψ (t = 0) = i(0)

	 	 then   ψ (t) = cn(t) e
− iωnt n(0)

n
∑   with  

 
i! "c f (t) = ′Hfn e

iω fntcn(t)
n
∑ 	 	

 

• ω fn ≡ E f
(0) − En

(0)( ) / !

• ′Hfn ≡ f (0) ′H n(0)

	 	 & to 1st order in  ′H ≪ H (0) ,    
 
c f (t) ≈ δ fi +

1
i!

′Hfi ( ′t )
0

t

∫ eiω fi ′t d ′t  

The first box is the solution form, the second box is the exact differential equation it must satisfy, and the third 
box is the 1st-order perturbative solution.  Some names: ωfi is called the transition frequency for going from 
initial state i to final state f, while cf(t) is the transition amplitude for doing the same thing.  The transition 
probability that we are usually trying to calculate is

	 	 Pf→i = c f (t)
2

Problem 1 : Two-State hydrogen atom in electric field	 adapted from Griffiths 9.1

Systems with only two independent states are excellent sandboxes for playing around with time-dependent 
potentials, e.g. you can write down all the matrix elements of ′Hfn  since there are only four of them.  

Let’s take a specific case.  A hydrogen atom is placed in a time-dependent electric field  
!
E = E(t) ẑ .  

(a)  Calculate all four matrix elements ′Hij of the perturbation ′H = eE z  between the ground state (n = 1) 
and the quadruply degenerate first excited states (n = 2).  

(b)  Show that the diagonal elements ′Hii  of the perturbation are both zero for all five states.  

▶ NOTE: There is only one integral to be done here, if you exploit oddness with respect to z; only one of the n 
= 2 states is “accessible” from the ground state by a perturbation of this form, and therefore the system 
functions as a two-state configuration — assuming transitions to higher excited states can be ignored.  

(c)  It is very commonly the case that the diagonal elements ′Hii  of a time-dependent perturbation are zero.  
In this case, the exact differential equations

	 	
 
i! "c f (t) = ′Hfn e

iω fntcn(t)
n
∑

for the two coefficients ca (t)  and cb (t) (using Griffiths’ notation for two states) reduce to two coupled 
differential equations without summation signs.  Show that the above reduces to these two in the case ′Hii = 0 :

	 	
 
!ca =

1
i"

′Hab e
−iω0tcb    and  

 
!cb =

1
i"

′Hbae
iω0t ca

These are Griffiths’ equation 9.13, on which the first part of his chapter 9 are based.  



NOTATION CHANGE : We will henceforth stop placing a superscript (0) on the states and energies of the 
unperturbed system.  Reason?  We are ALWAYS referring to the states of the unperturbed system in time-
dependent PT, so there is no reason to flag it with such notation.  As we mentioned in class, the goal of time-
dependent PT is quite different from that of time-independent PT.  

	 • t-indep. PT : calculate changes to the eigenenergies & eigenstates of H0 produced by the perturbation H ′
	 • t-dep.    PT : calculate transition probabilities caused by H ′ between states of the unperturbed system H0 

Problem 2 : Rabi flopping frequency	 adapted from Griffiths 9.7

A rare example of a system that can be solved exactly is the important case of a two-state problem with a 
sinusoidal oscillating potential.  The system is often an atom or a molecule, with two states of particular interest 
or relevance ; the perturbation usually comes from an incident electromagnetic wave whose frequency ω is 
tuned to the transition frequency ωab = (Ea-Eb)/ℏ between the two states.  

Here is a simplified expression for the sinusoidal perturbation  V (
!r ) cos(ωt).after it is applied to a system with

two states a and b in the case that the driving frequency ω is very close to the transition frequency ωab : 1

	 	 ′Hba =
Vba
2
e−iωt ,     ′Hab =

Vab
2
eiωt ,     ′Haa = ′Hbb = 0     with    Vab ≡ ψ a V ψ b .

(a)  Solve the two coupled equations you obtained in problem 1(c) using the initial conditions ca(0) = 1  and 
cb (0) = 0  (i.e. the system starts in state a at time t = 0).  Express your results for ca(t)  and cb(t)  in terms of

	 	
 
ω r ≡

1
2

ω −ω ab( )2 + Vab / !( )2 , called the Rabi flopping frequency.  Answers in footnote2.

(b)  Determine the transition probability Pa→b(t)  and show that it never exceeds 1.  Confirm that 
ca (t)

2 + cb (t)
2 = 1  at all times.  (What would it mean if that were not true?  Ask if you’re not sure!) 

(c)  Check that Pa→b(t)  reduces to the perturbation theory result 

	 	 Pa→b(t) = cb(t)
2
≈
Vab

2 sin2 ω ab −ω( )t / 2⎡⎣ ⎤⎦
ω ab −ω( )2

when the perturbation is “small”, and state precisely what small means in this context, as a constraint on V.  

(d)  At what time does the system first return to its initial state?  

1  Griffiths §9.1.3 shows how the approximation ω ≈ ω0≡ωab is applied. 

2 Q2(a) results :  
 
cb(t) = − i

2!ω r
Vbae

i(ωab−ω )t /2 sin(ω rt) ,   ca(t) = e
i ω−ωab( )t /2 cos ω rt( ) + i ωab −ω

2ω r

⎛
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