Phys 487 Discussion 11 - Time-Dependent Perturbation Theory

As we derived in class, if our Hamiltonian H consists of a time-independent part H_{0} with known eigenvalues $E_{n}^{(0)}$ and eigenstates $\left|n^{(0)}\right\rangle$ plus and a much smaller time-dependent part H^{\prime}, then we get the following results to first order in the small perturbation :

Given • $H(t)=H^{(0)}+H^{\prime}(t), \quad \bullet\left\{E_{n}^{(0)},\left|n^{(0)}\right\rangle\right\}=$ the eigen-* of $H^{(0)} \quad \bullet$ initial state $|\psi(t=0)\rangle=\left|i^{(0)}\right\rangle$
then $\quad|\psi(t)\rangle=\sum_{n} c_{n}(t) e^{-i \omega_{n} t}\left|n^{(0)}\right\rangle$ with $i \hbar \dot{c}_{n}(t)=\sum_{n} H_{f n}^{\prime} e^{i \omega_{f n} t} c_{n}(t)$

- $\omega_{f n} \equiv\left(E_{f}^{(0)}-E_{n}^{(0)}\right) / \hbar$
- $H_{f n}^{\prime} \equiv\left\langle f^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle$
$\&$ to $\underline{1^{\text {st }} \text { order }}$ in $H^{\prime} \ll H^{(0)}, \quad c_{f}(t) \approx \delta_{f i}+\frac{1}{i \hbar} \int_{0}^{t} H_{f i}^{\prime}\left(t^{\prime}\right) e^{i \omega_{f i} t^{\prime}} d t^{\prime}$
Some names: $\omega_{f i}$ is called the transition frequency for going from initial state i to final state f, while $c_{f}(t)$ is the transition amplitude for doing the same thing. The transition probability that we are usually trying to calculate is

$$
P_{f \rightarrow i}=\left|c_{f}(t)\right|^{2}
$$

Problem 1:1D SHO ${ }^{\text {TM }}$ in a decaying electric field

Consider a one-dimensional harmonic oscillator that is in the ground state $\mid 0>$ of the unperturbed Hamiltonian at $t=-\infty$. NOTE: since all the states $I n>$ that we are going to talk about are eigenstates of the unperturbed Hamiltonian, we can suppress the ${ }^{(0)}$ subscript without confusion. The following perturbation is applied between $t=-\infty$ and $+\infty$:

$$
H^{\prime}(t)=-q E x e^{-t^{2} / \tau^{2}}
$$

where q is the particle's charge and E is a constant electric field. What is the probability that the oscillator is in the state $\mathrm{I} n>$ at $t=\infty$?

Problem 2 : 1D SHO ${ }^{\text {TM }}$ again

Show that if the perturbation is $H^{\prime}(t)=-\frac{q E x}{1+(t / \tau)^{2}}$ instead, then to first order $P_{0 \rightarrow 1}=\frac{q^{2} E^{2} \pi^{2} \tau^{2}}{2 m \omega \hbar} e^{-2 \omega \tau}$.

Problem 3 : Hydrogen Atom with decaying electric field

A hydrogen atom is in the ground state at $t=-\infty$. An electric field $\vec{E}(t)=\hat{z} E e^{-t^{2} / \tau^{2}}$ is applied until $t=+\infty$. Show that the probability that the atom ends up in any of the $n=2$ states is, to first order,

$$
P_{1 \rightarrow 2}=\left(\frac{q E}{\hbar}\right)^{2}\left(\frac{2^{15} a_{0}^{2}}{3^{10}}\right) \pi \tau^{2} e^{-\omega^{2} \tau^{2} / 2} \text { where } \omega \text { is the transition frequency } \omega \equiv \frac{E_{2 l m}-E_{100}}{\hbar} .
$$

Does the answer depend on whether or not we incorporate spin in the picture?

