Phys 487 Discussion 9 - The Variational Principle

Problem 1 : Linear Potential

Qual Problem

A particle of mass m moves in the 1D region $x>0$ and experiences the following potential energy :

$$
V(x)=\left\{\begin{array}{cc}
\infty & \text { for } x \leq 0 \\
F x & \text { for } x>0
\end{array} \quad \text { where } F\right. \text { is a real, positive constant. }
$$

Use a variational methods to obtain an estimate for the ground state energy. But first, think about these
TIPS for deciding on a trial wavefunction:

- Think about the wavefunction's asymptotic behaviour, i.e. how it must behave / what values it must reach in the limits $x \rightarrow \infty$ and $x \rightarrow 0$.
- As we mentioned in class, for systems that extend to $\pm \infty$, the easiest trial wavefunctions to work with are almost always Gaussians and/or falling exponentials, i.e. $\exp \left(-\alpha x^{2}\right)$ and $\exp (\mp \alpha x)$. Either form will give you a good answer here, but one will be better than the other. And don't forget ...
- The forms in the previous bullet are common choices for taking care of $x \rightarrow+\infty$ behaviour ... but don't forget about the OTHER boundary condition, which in this case is not $\mathrm{x} \rightarrow-\infty$ but $\mathrm{x} \rightarrow 0$! You will have to make a small but significant modification to the previous forms before you can use them as good trial wavefunctions for this problem!

Problem 2 : Connecting Variational Principle \& Perturbation Theory

Griffiths 7.5(a)
Use the variational principle to prove that first-order non-degenerate perturbation theory always overestimates (or more exactly, never underestimates) the ground state energy.

Problem 3 : SHO, $1^{\text {st }}$ excited state

Griffiths 7.4(b)
Find the best bound on the first excited state of the 1D harmonic oscillator that you can obtain from the trial wavefunction

$$
\psi(x)=A x e^{-b x^{2}}
$$

Problem 4 : δ Function Potential

Griffiths 7.3
Find the best bound on the ground-state energy E_{gs} for the δ-function potential $V(x)=-\alpha \delta(x)$ using as your trial wavefunction a triangular form that peaks at the origin and falls off linearly on either side to $x= \pm a / 2$. (So the total width of the triangle is $a \ldots$ which is your adjustable parameter, and not equal to the Greek α in front of the δ-function potential, which is a given value. a and α look the same in this font, argh!).

