Phys 487 Discussion 8 - Qual Essentials Requiring Perturbation Theory

Problem 1 : Electron hanging around inside the nucleus

To a pretty good approximation, a nucleus of charge Z can be treated as a sphere of radius R_{0} with a uniform charge density. The nuclear radius, R_{0}, is extremely small compared with the Bohr radius, a_{0}, of the hydrogen atom ($10^{4}-10^{5}$ times smaller!), so $R_{0} / a_{0} \ll 1$ provides an excellent opportunity for the use of approximation methods like perturbation theory!
(a) Obtain the electrostatic potential energy $V(r)$ between the nucleus and an atomic electron that is valid when the electron is outside $\left(r>R_{0}\right)$ or INSIDE $\left(r<R_{0}\right)$ the nucleus. (Hint: this is a 212 problem ... Gauss' Law ...) Defining the potential energy outside a POINT nucleus to be $V_{0}(r)=-Z e^{2} /\left(4 \pi \varepsilon_{0} r\right)$, find the difference $\delta V(r)=$ $V(r)-V_{0}(r)$ due to the finite size of the nucleus.
(b) A single electron is bound the nucleus in the lowest-energy bound state. What is its wave function when calculated using the potential $V_{0}(r)$ from a point nucleus of charge Z ?
(c) Use first-order perturbation theory to derive an expression for the change in the ground state energy of the electron due to the finite size of the nucleus.

Problem 2: Hydrogen atom in simultaneous E and B fields
Excellent Qual Problem
Consider an electron in the $\mathrm{n}=2$ shell of the hydrogen atom. The 2 s and 2 p states are initially degenerate (we are ignoring relativistic corrections). Then we impose two simultaneous perturbations that each add a small potential energy term to the Hamiltonian:

- an electric field of constant magnitude E in the $+x$ direction: adds $H_{E}^{\prime}=e V(x)=-e E x$
- a magnetic field given by the vector potential $\vec{A}=\frac{B}{2}(-y \hat{x}+x \hat{y})=\frac{B}{2} s \hat{\phi}$: adds $H_{B}^{\prime} \approx-\frac{e}{m} \vec{p} \cdot \vec{A}$
(We are ignoring the magnetic moment of the electron.) Calculate how the four $n=2$ states are altered by these simultaneous perturbations.

HINT: Same as the Stark effect problem last week, there are a lot of integrals in this problem, but almost all of them are ZERO. So study each one carefully before you do any calculations!

