
Phys 487 Discussion 7 – Degenerate Perturbation Theory

Today we will learn and use the procedure for applying perturbation theory to degenerate states; in the next 
lecture, we will derive the procedure.  

The Procedure

Perturbation theory always starts with an “unperturbed” Hamiltonian H0 whose eigenstates n(0)  or ψ n
(0){ }  

and eigenvalues En
(0){ }  can be obtained exactly.  A small perturbing Hamiltonian H′ << H0 is then added to H0 

to produce the full Hamiltonian H = H0 + ε ′H .  This is the Hamiltonian whose eigen-things we would like to 
obtain.  I have attached a dimensionless scale factor ε << 1 to H′ so that I can easily keep track of orders of 
smallness.  (Sometimes such a small scale factor is an intrinsic part of the problem, sometimes not.)  

Suppose that a subset of the unperturbed eigenenergies En
(0){ }  are degenerate, i.e. have the same value Eα.

Let the quantum numbers of these degenerate eigenstates be { α1, α2, α3, …, αn }.  If we write H0 in matrix 
form using as basis the unperturbed eigenstates n(0){ } ,  we get the diagonal matrix H0( )mn ≡ m(0) Ĥ0 n

(0) : 
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⎟

   where all the empty elements are 0. 

I have bold-faced the degenerate energies and left off the superscript (0) so that you can spot them easily.  
The degenerate states α 1

(0) , ..., α n
(0){ } , which are just 3(0) , 4(0){ }  here,  form a degenerate subspace 

where any linear combination of the | αi >’s is also an eigenstate of H0 with the same eigenvalue Eα. 

Degenerate perturbation theory is accomplished by finding a particular
set of linear combinations of the | αi >’s, i.e. within the degenerate subspace, 

that diagonalizes the perturbation matrix ′H( )ij ≡ i(0) ˆ ′H j (0) .

Once you have found these linear combinations β1
(0) , ..., β n

(0){ } ,  i.e. the eigenvectors of H′ within the 

degenerate subspace, find their corresponding eigenvalues and you will have your first-order corrections

	 	 Eβi
(1) = β i

(0) ′H β i
(0)

If you all goes well, these 1st-order energy corrections should be non-degenerate, i.e. they should break the 
degeneracy of the α1,...αn subspace.  



Problem 1 : The Last Part of Discussion 6 Problem 3	 Griffiths 6.9(d)

In last week’s discussion you had this Hamitonian :
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where V0 is a constant and ε is a small number << 1.  Have a look at the posted questions and solution to remind 
yourself: you used various techniques to find the 1st and 2nd order corrections to this 3-state Hamiltonian’s 
energies.  Today, use degenerate perturbation theory to find the first-order correction to the two initially 
degenerate eigenvalues.  Compare with your various results from last week!

Problem 2 : Stark Effect	 Griffiths 6.36

When an atom is placed in a uniform external electric field Eext, the energy levels are shifted — a phenomenon 
known as the Stark effect.  In this problem we analyze the Stark effect for the n = 1 and n = 2 states of 
hydrogen.  Let the field point in the z direction, so the potential energy of the electron is

	 	 ′HS = eEext z = eEext r cosθ

Treat this as a perturbation on the simple “Bohr” Hamiltonian for the hydrogen atom,  

	 	
 
H0 = − !

2∇2

2m
− e2

4πε0 r
.

Spin is irrelevant to this problem so ignore it.  

(a)  Show that the ground state energy is not affected by this perturbation, to first order.

(b)  The first excited state is 4-fold degenerate: ψ200, ψ211, ψ210, ψ21–1.  Using degenerate perturbation theory, 
determine the first-order corrections to the energy.  Into how many levels does E2 split? 

(c)  What are the “β” wave functions for part (b), i.e. the ones that diagonalize the perturbation ′HS ?  (Griffiths 
calls these “good” wavefunctions.)  Find the expectation value of the electric dipole moment ( 

!pe = −e !r ) in each 
of these “good” states.  Notice that the results are independent of the applied field — evidently hydrogen in its 
first excited state can carry a permanent electric dipole moment. 

HINT: There are a lot of integrals in this problem, but almost all of them are ZERO.  So study each one 
carefully, before you do any calculations!  For example, if the φ integral vanishes, there’s not much point in 
doing the r and θ integrals!  Partial answer: ′H13 = ′H 31 = −3ea0 Eext  where a0 is the Bohr radius as usual; 
all other elements of ′Hij ≡ β i

(0) ′H β j
(0)  are zero ☺︎. 


