Phys 487 Discussion 6 – Practice with Matrix Representations : Time Dependence of States & 2nd-Order Perturbation Theory

Problem 1 : Time-Dependence of a Starting State

The Hamiltonian for a certain three-level system is represented by the matrix

$$\mathbf{H} = \left(\begin{array}{ccc} a & 0 & b \\ 0 & c & 0 \\ b & 0 & a \end{array} \right)$$

where *a*, *b*, and *c* are real numbers. Assume $a - c \neq \pm b$.

(a) We can already tell that the **basis** in which this Hamiltonian is written is **not** { the system's energy eigenstates }. How can we tell?

(b) If the system starts out in the state
$$|\mathscr{A}(0)\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
, what is its time-dependence $|\mathscr{A}(t)\rangle$?
(c) If the system starts out in the state $|\mathscr{A}(0)\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, what is its time-dependence $|\mathscr{A}(t)\rangle$?

Problem 2 : Too Easy, Drill Sergeant, Too Easy!

The Hamiltonian for a certain three-level system is represented by the matrix

$$\mathbf{H} = \hbar \boldsymbol{\omega} \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right)$$

Two other observables, A and B, are represented by the matrices

$$\mathbf{A} = \lambda \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \text{ and } \mathbf{B} = \mu \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

where ω , λ , and μ are positive real numbers.

(a) Find the eigenvalues and (normalized) eigenvectors of **H**, **A**, and **B**.

(b) Suppose the system starts out in the generic state $|\mathscr{A}(0)\rangle = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$ with $|c_1|^2 + |c_2|^2 + |c_3|^2 = 1$.

Find the expectation values at t = 0 of the observables H, A, and B.

Griffiths 3.37

Griffiths 3.38

(c) What is $|\mathscr{L}(t)\rangle$? If you measured the energy of this state at time *t*, what values might you get, and what is the probability of each? Answer the same questions for observables *A* and *B* if you are feeling energetic.

Problem 3 : A Perturbed Hamiltonian in Matrix Form

Consider a quantum system with only three linearly independent states. Suppose the Hamiltonian, in matrix form, is

$$\mathbf{H} = V_0 \begin{pmatrix} (1-\varepsilon) & 0 & 0 \\ 0 & 1 & \varepsilon \\ 0 & \varepsilon & 2 \end{pmatrix}$$

where V_0 is a constant and ε is a small number $\ll 1$.

(a) Write down the eigenvectors and eigenvalues of the **unperturbed Hamiltonian**, i.e. the Hamiltonian you obtain by setting the small parameter ε to zero.

(b) Solve for the *exact* eigenvalues of **H** without using any perturbation-theory formulae at all. Expand each of them as a power series in ε , up to second order.

(c) Use first- and second-order non-degenerate perturbation theory to find the approximate eigenvalue for the state that grows out of the non-degenerate eigenvector of H_0 . The formulae are found at the bottom of this page. Compare the exact result that you found in (a).

Problem 4 : Qual Time! A Second-Order Perturbation Theory Problem

A particle moves in a 3D SHO with potential energy V(r). A weak perturbation $\delta V(x,y,z)$ is applied:

$$V(r) = \frac{m\omega^{2}}{2} (x^{2} + y^{2} + z^{2}) \quad \text{and} \quad \delta V(x, y, z) = U xyz + \frac{U^{2}}{\hbar\omega} x^{2} y^{2} z^{2}$$

where U is a small parameter. Use perturbation theory to calculate the <u>change</u> in the ground state energy to order $O(U^2)$. Use without proof all the results you like from the 1D SHO \rightarrow see supplementary file on website.

_ Perturbation Theory Formulae _____

- "zeroth-order" Hamiltonian H_0 has <u>exact</u> eigenvalues $\{E_n^{(0)}\}$ and eigenstates $\{|n^{(0)}\rangle\}$
- actual Hamiltonian $H = H_0 + H'$ where H' is a small correction to H_0 (a "perturbation", $H' \ll H_0$)
- series expansion of H eigenvalues: $E_n = E_n^{(0)} + E_n^{(1)} + E_n^{(2)} + \dots$ for each n, where $E_n^{(0)} \gg E_n^{(1)} \gg E_n^{(2)} \gg \dots$
- series expansion of *H* eigenstates: $|n\rangle = |n^{(0)}\rangle + |n^{(1)}\rangle + |n^{(2)}\rangle + \dots$ for each *n*, where $|n^{(0)}\rangle \gg |n^{(1)}\rangle \gg \dots$

As long as the exact eigenstates $\{|n^{(0)}\rangle\}$ are **non-degenerate** and the Hamiltonian $H = H_0 + H'$ has **no explicit time-dependence**, the formulae for the 1st-order and 2nd-order corrections to each energy eigenvalue E_n and energy eigenstate $|n\rangle$ are

• $E_n^{(1)} = \langle n^{(0)} | H' | n^{(0)} \rangle$ = the expectation value of the perturbation H' in the *n*th exact state,

•
$$|n^{(1)}\rangle = \sum_{m \neq n} \frac{\langle m^{(0)} | H' | n^{(0)} \rangle}{E_n^{(0)} - E_m^{(0)}} | m^{(0)} \rangle$$
, and • $E_n^{(2)} = \langle n^{(0)} | H' | n^{(1)} \rangle = \sum_{m \neq n} \frac{|\langle m^{(0)} | H' | n^{(0)} \rangle|^2}{E_n^{(0)} - E_m^{(1)}}$.

Griffiths 6.9