
Phys 487 Discussion 6 – Practice with Matrix Representations : 
Time Dependence of States  &  2nd-Order Perturbation Theory

Problem 1 : Time-Dependence of a Starting State	 Griffiths 3.37

The Hamiltonian for a certain three-level system is represented by the matrix

	 	 H =
a 0 b
0 c 0
b 0 a

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  

where a, b, and c are real numbers.  Assume a – c ≠ ±b. 

(a)  We can already tell that the basis in which this Hamiltonian is written is not { the system’s energy 
eigenstates }.  How can we tell? 

(b)  If the system starts out in the state 

 

S(0) =
0
1
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ,  what is its time-dependence  S(t) ?

(c)  If the system starts out in the state 

 

S(0) =
0
0
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ , what is its time-dependence  S(t) ? 

Problem 2 : Too Easy, Drill Sergeant, Too Easy!	 Griffiths 3.38

The Hamiltonian for a certain three-level system is represented by the matrix

	 	

 

H = !ω
1 0 0
0 2 0
0 0 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Two other observables, A and B, are represented by the matrices

	 	 A = λ
0 1 0
1 0 0
0 0 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟    and   B = µ

2 0 0
0 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

where ω, λ, and μ are positive real numbers.  

(a)  Find the eigenvalues and (normalized) eigenvectors of H, A, and B.  

(b)  Suppose the system starts out in the generic state 

 

S(0) =
c1
c2
c3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 with c1
2 + c2

2 + c3
2 = 1 .

Find the expectation values at t = 0 of the observables H, A, and B. 



(c)  What is  S(t) ?  If you measured the energy of this state at time t, what values might you get, and what is 
the probability of each?  Answer the same questions for observables A and B if you are feeling energetic. 

Problem 3 : A Perturbed Hamiltonian in Matrix Form	 Griffiths 6.9

Consider a quantum system with only three linearly independent states.  Suppose the Hamiltonian, in matrix 
form, is 

	 	 H =V0

(1− ε ) 0 0
0 1 ε
0 ε 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

where V0 is a constant and ε is a small number << 1. 

(a)  Write down the eigenvectors and eigenvalues of the unperturbed Hamiltonian , i.e. the Hamiltonian you 
obtain by setting the small parameter ε to zero.  

(b)  Solve for the exact eigenvalues of H without using any perturbation-theory formulae at all.  Expand each of 
them as a power series in ε, up to second order. 

(c)  Use first- and second-order non-degenerate perturbation theory to find the approximate eigenvalue for the 
state that grows out of the non-degenerate eigenvector of H0.  The formulae are found at the bottom of this page.  
Compare the exact result that you found in (a). 

Problem 4 : Qual Time! A Second-Order Perturbation Theory Problem

A particle moves in a 3D SHO with potential energy V(r).  A weak perturbation δV(x,y,z) is applied:  

	 	 V (r) = mω
2

2
x2+y2 + z2( ) 	 	 and 	

 
δV (x, y, z) =U xyz + U

2

!ω
x2y2z2  

where U is a small parameter.  Use perturbation theory to calculate the change in the ground state energy to 
order O(U2).  Use without proof all the results you like from the 1D SHO → see supplementary file on website.

________________ Perturbation Theory Formulae _______________________________________________

	 • “zeroth-order” Hamiltonian H0 		 has exact eigenvalues En
(0){ }  and eigenstates n(0){ }

	 • actual Hamiltonian H = H0 + ′H   	where ′H  is a small correction to H0 (a “perturbation”,  ′H ≪ H0 )

	 • series expansion of H eigenvalues: 	En = En
(0) + En

(1) + En
(2) + ...  for each n, where  En

(0) ≫ En
(1) ≫ En

(2) ≫ ...

	 • series expansion of H eigenstates:	 n = n(0) + n(1) + n(2) + ...  for each n, where  n
(0) ≫ n(1) ≫ ...

As long as the exact eigenstates n(0){ }  are non-degenerate and the Hamiltonian H = H0 + ′H  has no 
explicit time-dependence,  the formulae for the 1st-order and 2nd-order corrections to each energy 
eigenvalue En and energy eigenstate n  are

	 	 ● En
(1) = n(0) ′H n(0)  = the expectation value of the perturbation H′ in the nth exact state,

	 	 ●  n(1) =
m(0) ′H n(0)

En
(0) − Em

(0)
m≠n
∑ m(0) ,	 	 and		 ●  En

(2) = n(0) ′H n(1) =
m(0) ′H n(0)

2

En
(0) − Em

(1)
m≠n
∑ .	


