Problem 1: Time-Dependence of a Starting State

Griffiths 3.37
The Hamiltonian for a certain three-level system is represented by the matrix

$$
\mathbf{H}=\left(\begin{array}{lll}
a & 0 & b \\
0 & c & 0 \\
b & 0 & a
\end{array}\right)
$$

where a, b, and c are real numbers. Assume $a-c \neq \pm b$.
(a) We can already tell that the basis in which this Hamiltonian is written is not \{ the system's energy eigenstates $\}$. How can we tell?
(b) If the system starts out in the state $|\&(0)\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, what is its time-dependence $|\&(t)\rangle$?
(c) If the system starts out in the state $|\&(0)\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, what is its time-dependence $|\&(t)\rangle$?

Problem 2 : Too Easy, Drill Sergeant, Too Easy!
Griffiths 3.38
The Hamiltonian for a certain three-level system is represented by the matrix

$$
\mathbf{H}=\hbar \omega\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Two other observables, A and B, are represented by the matrices

$$
\mathbf{A}=\lambda\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\mu\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

where ω, λ, and μ are positive real numbers.
(a) Find the eigenvalues and (normalized) eigenvectors of \mathbf{H}, \mathbf{A}, and \mathbf{B}.
(b) Suppose the system starts out in the generic state $|\&(0)\rangle=\left(\begin{array}{c}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$ with $\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}=1$.

Find the expectation values at $t=0$ of the observables H, A, and B.
(c) What is $|\&(t)\rangle$? If you measured the energy of this state at time t, what values might you get, and what is the probability of each? Answer the same questions for observables A and B if you are feeling energetic.

Problem 3 : A Perturbed Hamiltonian in Matrix Form

Griffiths 6.9
Consider a quantum system with only three linearly independent states. Suppose the Hamiltonian, in matrix form, is

$$
\mathbf{H}=V_{0}\left(\begin{array}{ccc}
(1-\varepsilon) & 0 & 0 \\
0 & 1 & \varepsilon \\
0 & \varepsilon & 2
\end{array}\right)
$$

where V_{0} is a constant and ε is a small number $\ll 1$.
(a) Write down the eigenvectors and eigenvalues of the unperturbed Hamiltonian , i.e. the Hamiltonian you obtain by setting the small parameter ε to zero.
(b) Solve for the exact eigenvalues of \mathbf{H} without using any perturbation-theory formulae at all. Expand each of them as a power series in ε, up to second order.
(c) Use first- and second-order non-degenerate perturbation theory to find the approximate eigenvalue for the state that grows out of the non-degenerate eigenvector of H_{0}. The formulae are found at the bottom of this page. Compare the exact result that you found in (a).

Problem 4 : Qual Time! A Second-Order Perturbation Theory Problem

A particle moves in a 3D SHO with potential energy $V(r)$. A weak perturbation $\delta V(x, y, z)$ is applied:

$$
V(r)=\frac{m \omega^{2}}{2}\left(x^{2}+y^{2}+z^{2}\right) \quad \text { and } \quad \delta V(x, y, z)=U x y z+\frac{U^{2}}{\hbar \omega} x^{2} y^{2} z^{2}
$$

where U is a small parameter. Use perturbation theory to calculate the change in the ground state energy to order $O\left(U^{2}\right)$. Use without proof all the results you like from the 1D SHO \rightarrow see supplementary file on website.
_ Perturbation Theory Formulae \qquad

- "zeroth-order" Hamiltonian H_{0} has exact eigenvalues $\left\{E_{n}^{(0)}\right\}$ and eigenstates $\left\{\left|n^{(0)}\right\rangle\right\}$
- actual Hamiltonian $H=H_{0}+H^{\prime}$ where H^{\prime} is a small correction to H_{0} (a "perturbation", $H^{\prime} \ll H_{0}$)
- series expansion of H eigenvalues: $E_{n}=E_{n}^{(0)}+E_{n}^{(1)}+E_{n}^{(2)}+\ldots$ for each n, where $E_{n}^{(0)} \gg E_{n}^{(1)} \gg E_{n}^{(2)} \gg \ldots$
- series expansion of H eigenstates: $|n\rangle=\left|n^{(0)}\right\rangle+\left|n^{(1)}\right\rangle+\left|n^{(2)}\right\rangle+\ldots$ for each n, where $\left|n^{(0)}\right\rangle \gg\left|n^{(1)}\right\rangle \gg \ldots$

As long as the exact eigenstates $\left\{\left|n^{(0)}\right\rangle\right\}$ are non-degenerate and the Hamiltonian $H=H_{0}+H^{\prime}$ has no explicit time-dependence, the formulae for the $1^{\text {stt-order }}$ and $2^{\text {nd }}$-order corrections to each energy eigenvalue E_{n} and energy eigenstate $|n\rangle$ are

- $E_{n}^{(1)}=\left\langle n^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle=$ the expectation value of the perturbation H^{\prime} in the $n^{\text {th }}$ exact state,

$$
\bullet\left|n^{(1)}\right\rangle=\sum_{m \neq n} \frac{\left\langle m^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle}{E_{n}^{(0)}-E_{m}^{(0)}}\left|m^{(0)}\right\rangle, \quad \text { and } \quad \bullet E_{n}^{(2)}=\left\langle n^{(0)}\right| H^{\prime}\left|n^{(1)}\right\rangle=\sum_{m \neq n} \frac{\left.\left|\left\langle m^{(0)}\right| H^{\prime}\right| n^{(0)}\right\rangle\left.\right|^{2}}{E_{n}^{(0)}-E_{m}^{(1)}} \text {. }
$$

