Fourier Series as an Inner Product Space

• Space : $|f\rangle = \text{L-periodic functions } f(x)$ that are periodic over $x = \left[-\frac{L}{2} \rightarrow \frac{L}{2} \right]$

• Real Basis:
$$|n\rangle \equiv \begin{cases} \sin\left(\frac{n2\pi x}{L}\right) & n=1,...,\infty \\ 1/\sqrt{2} & n=0 \\ \cos\left(\frac{n2\pi x}{L}\right) & n=-1,...,-\infty \end{cases}$$
• Rinner Product: $\langle g|f\rangle \equiv \frac{2}{L} \int_{-L/2}^{L/2} g(x)f(x)dx$

• \mathbb{C} Complex Basis : $|n\rangle = \exp\left(i\frac{n2\pi x}{L}\right)$, $n = -\infty...+\infty$ • \mathbb{C} Inner Product : $\langle g|f\rangle \equiv \frac{1}{L}\int_{-L/2}^{L/2} g^*(x) f(x) dx$

→ Basis is Orthonormal : $\langle n|m\rangle = \delta_{nm}$

 \rightarrow Completeness : any $|f\rangle = \sum_{n=-\infty}^{+\infty} |n\rangle\langle n|f\rangle$

Fourier Transform as an Inner Product Space

* take limit $L \to \infty$ of above with $k \equiv 2\pi n/L$

• Space : $|f\rangle \equiv$ real or complex functions f(x) 1

• **Basis #1**:
$$|k\rangle = \exp(ikx)$$
 for $k = -\infty$ to $+\infty$

sis #1:
$$|k\rangle = \exp(ikx)$$
 for $k = -\infty$ to $+\infty$ • Inner Product #1: $\langle g|f\rangle \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} g^*(x) f(x) dx$

• Basis #2 :
$$|k\rangle = \frac{1}{\sqrt{2\pi}} \exp(ikx)$$
 for $k = -\infty$ to $+\infty$ • Inner Product #2 : $\langle g|f\rangle \equiv \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g^*(x) f(x) dx$

• Inner Product #2 :
$$\langle g|f\rangle \equiv \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g^*(x) f(x) dx$$

ightarrow Basis is Orthonormal : $\left\langle k_1 \middle| k_2 \right\rangle = \delta_{k_1 k_2}$

 \rightarrow Completeness: any $|f\rangle = \int_{-\infty}^{+\infty} dk \, |k\rangle \langle k|f\rangle$

The fine print: f(x) must be piecewise-continuous, differentiable, and absolutely integrable (i.e. $\int |f(x)| dx$ must be finite)