Physics 486 Discussion 7 – Hermitian Operators and Commutators

On the back page are the 4 postulates of Quantum Mechanics as tabulated by R. Shankar in his QM textbook, Ch. 4. Jain has an expanded version in §10.5, where he enumerates 7 postulates that amount to the same thing. Shankar’s version has the advantage of conciseness, plus a helpful Classical Mechanics column for comparison; Jain’s version has the advantage of being more explicit and less jargon-heavy.

POSTULATE 1 says that all available information about the state of a quantum system at time \(t \) is encoded in the system’s wavefunction \(|\Psi(t)\rangle\), which is a member of the Hilbert Space \(\cong \text{Inner Product Space} \) of square-integrable complex-valued functions with inner product

\[
\langle f | g \rangle \equiv \int_{-\infty}^{+\infty} f^*(x) \, g(x) \, dx .
\]

POSTULATE 2 says that every measurable property \(Q \) of a system is associated with a Hermitian operator \(\hat{Q} \). This is the new concept we will explore today. For a single particle in one spatial dimension, the phase-space observables \(x \) and \(p \) are represented by these Hermitian operators:

\[
\hat{x} = x \quad \hat{p} = -i\hbar \frac{\partial}{\partial x}
\]

All other dynamical properties \(Q \) of the particle can be computed from these as \(\hat{Q}(\hat{x}, \hat{p}) \).

Problem 1 : What Are Hermitian Operators?

Hermitian operators are those associated with measurable quantities in QM. What properties must they possess? Measurements are real, so the expectation values of a Hermitian operator \(\hat{Q} \) must be real numbers, i.e. \(\langle \hat{Q} \rangle^\ast = \langle \hat{Q} \rangle \). We can take this as the definition of a Hermitian operator.

Since \(\langle \hat{Q} \rangle = \int_{-\infty}^{+\infty} \psi^\ast(x) \, \hat{Q} \, \psi(x) \, dx \), which is \(\langle \psi | \hat{Q} \psi \rangle \) in our new bra-ket notation,

and \(\langle \hat{Q} \rangle^\ast = \int_{-\infty}^{+\infty} \psi^\ast(x) \, \hat{Q}^\ast \, \psi^\ast(x) \, dx = \int_{-\infty}^{+\infty} (\hat{Q} \, \psi(x))^\ast \, \psi(x) \, dx \), which is \(\langle \hat{Q} \psi | \psi \rangle \).

Thus \(\langle \psi | \hat{Q} \psi \rangle = \langle \hat{Q}^\ast \psi | \psi \rangle \) is an equivalent definition to \(\langle \hat{Q} \rangle^\ast = \langle \hat{Q} \rangle \).

One more equivalence: as you will show on your homework, the above definitions are also equivalent to this:

\[
\langle g | \hat{Q} \, h \rangle = \langle \hat{Q} \, g | h \rangle
\]

for any two functions \(g(x) \) and \(h(x) \). This is the standard definition of a Hermitian operator \(\hat{Q} \), e.g. the one you will find in Wikipedia. Now, on to the properties of these operators!

(a) Prove that all eigenvalues of a Hermitian operator are REAL. Recall the definition of eigen-things: if

1 Q1 (b) evaluate \(\langle Q \rangle \) and \(\langle Q^2 \rangle \) for the eigenstate \(\psi_q \) with eigenvalue \(q \) … it is really easy to show that \(\langle Q^n \rangle = q^n \) in an eigenstate!
(c) What do you want to show? Write it down. … You want to show \(\langle f_1 | f_2 \rangle = 0 \) … Use the eigen-property of \(f_1 \) to replace it with something involving \(\hat{Q} \) … \(f_i = \hat{Q} \, f_i / q_i \) … use the Hermitian property of \(\hat{Q} \) to move it to the other side … use \(q_1 \neq q_2 \) …
(d) \(A_p = 1 / \sqrt{2\pi\hbar} \) (e) not normalizable … \(B_0 = 1 \) (f) hint: integrate by parts … hermiticity condition: \(C = \) imaginary
(g) hermiticity condition: \(A = \) real
(h) yes!!! (i) yes
(j) hint: evaluate \(\{\hat{x}, \hat{p}\} \psi(x) \) i.e. give the operators some function \(\psi(x) \) to work on, that will make your calculation much more clear … answer: \(\{\hat{x}, \hat{p}\} = i\hbar \)
(k) hermiticity condition: \(\{\hat{A}, \hat{B}\} = 0 \).

2 About eigen-things: “Eigen” is German for “one’s own”. Eigenart means “characteristic feature” or “distinctiveness” … Eigeninitiative means “his/her own idea” … Eigenleistung means “personal contribution” … In this vein, an eigenfunction of an operator \(Q \) is a function that is special to that operator in that the operator doesn’t change the shape of the eigenfunction at all, it just multiplies it by a scalar, which is the associated eigenvalue. The eigen-things of an operator \(Q \) are very personal to \(Q \).
\[\hat{Q}f_q = qf_q \]

for some function \(f_q \) and some scalar \(q \), then \(f_q \) is an eigenfunction of \(\hat{Q} \) with eigenvalue \(q \). For your proof, evaluate the Hermitian condition \(\langle f | \hat{Q} f \rangle = \langle \hat{Q} f | f \rangle \) for an eigenfunction \(f_q \) and see what condition that imposes on the eigenvalue \(q \).

(b) It is really important that those eigenvalues are real because they represent measurable values! We need to be very clear on something: an eigenfunction \(\psi_q \) of \(\hat{Q} \) with eigenvalue \(q \) is a state of definite \(Q \) i.e. the only possible value that the quantity \(Q \) can take if it is measured is the eigenvalue \(q \). To prove this, show that the variance \(\sigma_Q^2 = \langle Q^2 \rangle - \langle Q \rangle^2 \) is zero when the system is in an eigenstate of \(Q \), and so the only possible value you can measure is the average value \(\langle Q \rangle \) … which is what?

(c) Prove that two different eigenfunctions \(f_1 \) and \(f_2 \) of a Hermitian operator with different eigenvalues \(q_1 \) and \(q_2 \) are ORTHOGONAL. Hints are in the checkpoint.

(d) What are the eigenfunctions of the momentum operator? Show that \(\psi_p(x) = A_p e^{i(p/\hbar)x} \) works, with eigenvalue \(p \). Then, figure out what normalization constant \(A_p \) you need to make these un-normalizable plane-wave eigenfunctions obey Dirac orthonormality, i.e.
\[\langle \psi_{p_1} | \psi_{p_2} \rangle = \delta(p_2 - p_1) \]

You will need to use this fabulously useful representation of the Dirac \(\delta \) function that you found last week:
\[\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} \, dx = \delta(K) \]

(e) What are the eigenfunctions of the position operator? Show that \(\psi_{x_0}(x) = B_0 \delta(x - x_0) \) works, with eigenvalue \(x_0 \). Now to find the normalization constant \(B_0 \)! Are these eigenfunctions normalizable? If not, find the value of \(B_0 \) that makes the eigenfunctions obey Dirac orthonormality, i.e.
\[\langle \psi_{x_1} | \psi_{x_2} \rangle = \delta(x_2 - x_1) \]

(f) The momentum operator \(\hat{p}_x = -i\hbar \partial/\partial x \) represents one broad class of operators: derivatives \(\partial/\partial x, \partial/\partial y, \partial/\partial z, \partial/\partial t \). The energy operator \(\hat{E} = i\hbar \partial/\partial t \) is in this class. Consider a general first-derivative operator \(\hat{A} \) with a constant factor \(C \) out in front: \(\hat{A} = C(\partial/\partial x) \). In general, \(C \) can be complex. Is this \(\hat{A} \) operator Hermitian? You will find that it is, but only if you impose a condition on \(C \); what is that condition?

(g) The position operator \(\hat{x} = x \) represents the other class of operators: multiplicative functions \(A(x,y,z,t) \). The potential-energy operator \(\hat{V} = V(x,t) \) is in this class. Consider a general multiplicative-function operator \(\hat{A} = A(x,t) \) . In general, the function \(A(x,t) \) can be complex. Is this \(\hat{A} \) operator Hermitian? You will find that it is, but only if you impose a condition on \(A \); what is that condition?

(h) Do \(\hat{p} \) and \(\hat{x} \) obey the constraints you found in (f) & (g), i.e. are they Hermitian operators?

(i) Additional operators can be formed by adding and/or multiplying the two classes of operators you just investigated. First consider addition: let \(\hat{A} \) and \(\hat{B} \) be Hermitian operators. Is \(\hat{A} \pm \hat{B} \) Hermitian?

(j) Before we tackle multiplication, you must realize that the product of two operators is not necessarily commutative! We define the commutator of two operators as follows: \([\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A} \). Calculate the extremely important commutator \([\hat{x}, \hat{p}] \). It is not zero! It will appear in a famous relation very soon.

(k) And now multiplication of operators: if \(\hat{A} \) and \(\hat{B} \) are Hermitian operators, is the product \(\hat{A}\hat{B} \) Hermitian? You will find that the answer is yes only if a certain condition is met. What is that condition?
Appendix: Postulates of QM from R. Shankar, "Principles of Quantum Mechanics"

Classical Mechanics

I. The state of a particle at any given time is specified by the two variables \(x(t) \) and \(p(t) \), i.e., as a point in a two-dimensional phase space.

II. Every dynamical variable \(\omega \) is a function of \(x \) and \(p \): \(\omega = \omega(x, p) \).

Quantum Mechanics

I. The state of the particle is represented by a vector \(|\psi(t)\rangle \) in a Hilbert space.

II. The independent variables \(x \) and \(p \) of classical mechanics are represented by Hermitian operators \(X \) and \(P \) with the following matrix elements in the eigenbasis of \(X^\dagger \):

\[
\langle x'|X|x\rangle = x\delta(x - x')
\]

\[
\langle x'|P|x\rangle = -i\hbar\delta'(x - x')
\]

The operators corresponding to dependent variables \(\omega(x, p) \) are given Hermitian operators

\[
\Omega(X, P) = \omega(x \rightarrow X, p \rightarrow P)
\]

III. If the particle is in a state given by \(x \) and \(p \), the measurement\(\parallel\) of the variable \(\omega \) will yield a value \(\omega(x, p) \).

The state will remain unaffected.

IV. The state variables change with time according to Hamilton's equations:

\[
\dot{x} = \frac{\partial \mathcal{H}}{\partial p}
\]

\[
\dot{p} = -\frac{\partial \mathcal{H}}{\partial x}
\]

IV. The state vector \(|\psi(t)\rangle \) obeys the Schrödinger equation

\[
i\hbar \frac{d}{dt} |\psi(t)\rangle = \mathcal{H} |\psi(t)\rangle
\]

where \(H(X, P) = \mathcal{H}(x \rightarrow X, p \rightarrow P) \) is the quantum Hamiltonian operator and \(\mathcal{H} \) is the Hamiltonian for the corresponding classical problem.