Optical Traps

Optical Trap (Nobel Prize, 1997)
Bead is held by "optical force" in trap with effective spring constant k .
Can measure: "stall force" -max force motor can make. displacement of bead with nm . resolution.

Optical Traps

Why does index of refraction of bead $\mathrm{n}_{\text {bead }}>\mathrm{n}_{\text {water }}$ for trap to work?

Optical scattering forces - reflection (can’t ignore!)

Newton's third law - for every action there is an equal and opposite reaction

Lateral gradient force: Refraction

Object feels a force toward brighter light

Optical forces - Refraction

Axial gradient force: refraction

Focused

$n_{\text {bead }}>n_{\text {water }}$

$$
n_{\text {bead }}=n_{\text {water }}
$$

Beam doesn't change at all No scattering, no bending

Regular, stable trap. Force towards most intense light. Scattering, Bending.

$$
n_{\text {bead }}<n_{\text {water }}
$$

Why does index of refraction of bead $n_{\text {bead }}>n_{\text {water }}$ for trap to work?

Unstable trap. Force towards least intense light. Scattering, Bending, wrong way.

Optical Tweezer = Optical Trap

Dielectric objects are attracted to the center of the beam, slightly above the beam waist. This depends on the difference of index of refraction between the bead and the solvent (water).
Vary $k_{\text {trap }}$ with laser intensity such that $k_{\text {trap }} \approx k_{\text {bio }}(k \approx 0.1 \mathrm{pN} / \mathrm{nm})$

Can measure pN forces and (sub-) nm steps!

Basic Optical Trap set-up

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Requirements for a quantitative optical trap:

1) Manipulation - intense light (laser), large gradient (high NA objective), moveable stage (piezo stage) or trap (piezo mirror, AOD, ...) [AcoustOpicic Device- moveable laser pointer]
2) Measurement - collection and detection optics (BFP interferometry)
3) Calibration - convert raw data into forces (pN), displacements (nm)

1) Manipulation

Want to apply forces - need ability to move stage or trap (piezo stage, steerable mirror, AOD...)
(Acouto Optic Device: variable placement of laser)

Trap laser

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Multiple rays add their currents linearly to the electrodes, where each ray's power adds W_{i} current to the total sum.

$\Delta \mathrm{X} \sim\left(\mathrm{In}_{1}-\mathrm{In}_{2}\right) /\left(\mathrm{In}_{1}+\mathrm{In}_{2}\right)$
$\Delta \mathrm{Y} \sim\left(\mathrm{Out}_{1}-\mathrm{Out}_{2}\right) /\left(\mathrm{Out}_{1}+\mathrm{Out}_{2}\right)$

3) Calibration

Want to measure forces, displaces - measure voltages from PSD - need calibration

$$
\begin{aligned}
& \Delta \mathrm{x}=\alpha \Delta \mathrm{V} \\
& \mathrm{~F}=\mathrm{k} \Delta \mathrm{x}=\alpha \mathrm{k} \Delta \mathrm{~V}
\end{aligned}
$$

α allows you to go from the photodetector voltage to distance in nm, k gets you from distance to force in pN

Need to measure α, k.

Brownian motion as test force

$=0$ Langevin equation:
$m \ddot{x}+\dot{x}+k x=F(t)$

Inertia term (ma)
Inertia term for um-sized objects is always small (...for bacteria)

Drag force $\gamma=6 \pi \eta \mathrm{r}$

Fluctuating Brownian force

$$
\langle F(t)\rangle=0
$$

$$
\left\langle F(t) F\left(t^{\prime}\right)\right\rangle=2 \mathrm{k}_{\mathrm{B}} \mathrm{~T} \gamma \delta\left(t-t^{\prime}\right)
$$

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Autocorrelation function $\left\langle\Delta x(t) \Delta x\left(t^{\prime}\right)\right\rangle$

$\Delta \mathrm{At} \Delta \mathrm{t}$

$\left\langle\Delta x(t) \Delta x\left(t^{\prime}\right)\right\rangle$

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Autocorrelation function $\left\langle\Delta x(t) \Delta x\left(t^{\prime}\right)\right\rangle$

$\Delta i n t \Delta t$
$\left\langle\Delta x(t) \Delta x\left(t^{\prime}\right)\right\rangle$

Why does tail become wider?
Answer: If it's headed in one direction, it tends to keep going in for a finite period of time.
It doesn't forget about where it is instantaneously. It has memory.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Brownian motion as test force

$$
\begin{aligned}
& \text { Langevin equation: } \\
& \dot{x}+k x=F(t)
\end{aligned}
$$

Exponential autocorrelation function

$$
\left\langle\Delta x(t) \Delta x\left(t^{\prime}\right)\right\rangle=\frac{k_{B} T}{k} e^{-k\left|t-t^{\prime}\right| / \gamma}
$$

FT \rightarrow Lorentzian power spectrum

$$
S_{x}(f)=\frac{4 k_{B} T \gamma}{k^{2}} \frac{1}{1+\left(f / f_{c}\right)^{2}}
$$

Notice that this follows the Equilibrium Theorem

$$
\left\langle\Delta x^{2}\right\rangle=\frac{k_{B} T}{k}
$$

Corner frequency $f_{\mathrm{c}}=k / 2 \pi \gamma$

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

$$
S_{x}(f)=\frac{4 k_{B} T}{k^{2}} \frac{1}{1+\left(f / f_{c}\right)^{2}}
$$

As $f \rightarrow 0$, then

$$
S_{x}(f)=\frac{4 k_{B} T}{k^{2}}
$$

As $f \rightarrow f_{c}$, then

$$
S_{x}(f)=\frac{4 k_{B} T}{k^{2}} \frac{1}{2}
$$

As $\mathrm{f} \gg \mathrm{f}_{\mathrm{c}}$, then

$$
S_{x}(f) \rightarrow 0
$$

$$
S_{x}(f)=\frac{k_{B} T}{{ }^{2} f^{2}}
$$

1. Voltages vs. time from detectors. 2. Take FT. 3. Square it to get Power spectrum. 4. Power spectrum $=\alpha^{2}$ * $S_{x}(f)$.

The noise in position using equipartition theorem \rightarrow you calculate for noise at all frequencies (infinite bandwidth).

For a typical value of stiffness $(k)=0.1 \mathrm{pN} / \mathrm{nm}$.

$$
\begin{gathered}
\left\langle x^{2}>^{1 / 2}=\left(k_{B} T / k\right)^{1 / 2}=(4.14 / 0.1)^{1 / 2}=(41.4)^{1 / 2} \sim 6.4 \mathrm{~nm}\right. \\
\\
6.4 \mathrm{~nm} \text { is a pretty large number. }
\end{gathered}
$$

[Kinesin moves every 8.3 nm ; 1 base-pair = $3.4 \AA$]
How to decrease noise?

Reducing bandwidth reduces noise

If instead you collect data out to a lower bandwidth BW (100 Hz), you get a much smaller noise.

Noise = integrate power spectrum over frequency.
If $B W<f_{c}$ then it's simple integration because power spectrum is constant, with amplitude $=4 \mathrm{k}_{\mathrm{B}} T \gamma / \mathrm{k}^{2}$

Let's say $\mathrm{BW}=100 \mathrm{~Hz}$: typical value of $\gamma\left(10^{-6}\right.$ for $\sim 1 \mu \mathrm{~m}$ bead in water).
But $\left(\left\langle\mathrm{X}^{2}\right\rangle_{\mathrm{BW}}\right)^{1 / 2}=\left[\int \operatorname{const}^{*}(B W) \mathrm{dk}\right]^{1 / 2}=\left[\left(4 \mathrm{k}_{\mathrm{B}} \mathrm{T}_{\gamma} 100\right) / \mathrm{k}\right]^{1 / 2}=$ $\left[4^{*} 4.14^{*} 10^{-6 *} 100 / 0.1\right]^{1 / 2}$
~ $0.4 \mathrm{~nm}=4$ Angstrom!!

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Basepair Resolution-Yann Chemla @ UIUC

unpublished

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Observing individual steps

Motors move in discrete steps

Detailed statistics on kinetics of stepping \& coordination

Kinesin

Step size: 8nm

