1. Monatomic linear lattice: Consider a longitudinal wave

$$
\begin{equation*}
u_{s}=u \cos (\omega t-s K a) \tag{1}
\end{equation*}
$$

which propagates in a monatomic linear lattice of atoms M, spacing a, and nearest neighbor interaction C.
(a) Show that the total energy of the wave is

$$
\begin{equation*}
E=\frac{1}{2} M \sum_{s}\left(\frac{d u_{s}}{d t}\right)^{2}+\frac{1}{2} C \sum_{s}\left(u_{s}-u_{s+1}\right)^{2} \tag{2}
\end{equation*}
$$

where s runs over all atoms.
(b) By substitution of u_{s} in this expression, show that the time-average total energy per atom is

$$
\begin{equation*}
\frac{1}{4} M \omega^{2} u^{2}+\frac{1}{2} C(1-\cos K a) u^{2}=\frac{1}{2} M \omega^{2} u^{2} \tag{3}
\end{equation*}
$$

where in the last we have used the dispersion relation for this problem.
2. Basis of two unlike atoms: For the problem of phonons in crystals with a two-atom basis which we solved in class, find the amplitude ratios $\frac{u}{v}$ for the two branches at $K_{\max }=\frac{\pi}{a}$. Show that at this value of K, the two lattices act as if decoupled: one lattice remains at rest while the other lattice moves.
3. Diatomic chain: Consider the normal modes of a linear chain in which the force constants between the nearestneighbor atoms are alternately C and $10 C$. Let the masses be equal, and let the nearest-neighbor separation be $\frac{a}{2}$. Find $\omega(K)$ at $K=0$ and $K=\frac{\pi}{a}$. Sketch the dispersion relation by eye. This problem simulates a crystal of diatomic molecules such at H_{2}.
4. Enumeration of Phonon Modes: In this problem we will construct a 3×3 table where the rows are the spatial dimension and the columns are the number of atoms per unit cell. For spatial dimensions $d=1,2,3$ and for $p=1,2,3$ atoms per unit cell list the amount of transverse, longitudinal, acoustic, and optical phonon modes per wave vector in the first Brillouin zone.
5. Quantum Wells Suppose the we make 3-material sandwiches out of materials A and B in the order A-B-A. Consider only the valence band and conduction bands of both materials and describe whether or not the electrons and/or the holes are confined into quantum wells. Draw the shapes of the quantum wells to scale and roughly sketch the direction of the band-bending occurring from charge transfer at the material interfaces for the conduction band states. Note: The 0 eV valence band edge of material A is not the same as the 0 eV valence band edge for material B .
(a) $W_{A}=1 \mathrm{eV}, E_{c A}=1.2 \mathrm{eV}, E_{v A}=0 \mathrm{eV} E_{F A}=0.9 \mathrm{eV}$ and $W_{B}=1.1 \mathrm{eV}, E_{c B}=0.6 \mathrm{eV}, E_{v B}=0 \mathrm{eV}$ $E_{F B}=0.3 \mathrm{eV}$
(b) $W_{A}=1 \mathrm{eV}, E_{v A}=0 \mathrm{eV}, E_{G A}=1.2 \mathrm{eV}, E_{F A}=0.9 \mathrm{eV}$ and $W_{B}=1.1 \mathrm{eV}, E_{v B}=-1 \mathrm{eV}, E_{G B}=1.6 \mathrm{eV}$, $E_{F B}=0.3 \mathrm{eV}$
where W_{i} is the work-function, $E_{c i}$ and $E_{v i}$ are the conduction/valence band edges, $E_{F i}$ is the Fermi level, $E_{G i}$ is the energy gap defined by $E_{G i}=E_{c i}-E_{v i}$, and $i=A, B$ is the index labeling the two different materials.
6. Degeneracy in Landau Levels Suppose we confine a 3D free electron in an infinite square quantum well that confines the electrons along the z-direction so that the energy is

$$
\begin{equation*}
E_{j}(\mathbf{k})=\frac{\hbar^{2}\left(k_{x}^{2}+k_{y}^{2}\right)}{2 m^{*}}+\frac{\hbar^{2} \pi^{2}}{2 m^{*} d^{2}} j^{2} \tag{4}
\end{equation*}
$$

where $j=1,2,3, \ldots$ and d is the width of the quantum well. Suppose that $d=50 \mathrm{~nm}, L_{x}=L_{y}=1 \mathrm{~mm}$, and $m^{*}=0.1 m_{0}$ where m_{0} is the free-electron mass in vacuum. Assume that electrons can only fill the lowest subband $j=1$.
(a) What is the size of the magnetic length $\left(\ell_{B}^{2}=\hbar /(e B)\right)$ for $B=0,0.1,1,10$ and 100 Tesla?
(b) What is the cyclotron energy gap $\left(\omega_{c}=e B / m^{*}\right)$ (spacing between Landau levels) for $B=0,0.1,1,10$ and 100 Tesla?
(c) How many states can fit in the lowest Landau Level for $B=0.1,1,10$ and 100 Tesla?
(d) What density of electrons in cm^{-2} will exactly fill one Landau level for $B=0.1,1,10$ and 100 Tesla?
(e) Each quantum well subband has its own set of Landau levels what magnetic field strength will cause the second-lowest Landau level of $j=1$ to be higher energy than the lowest Landau level of $j=2$?
7. Density of States of Quantum Wires Suppose we have a free electron confined in two directions with energy

$$
\begin{equation*}
E_{q, r}(\mathbf{k})=\frac{\hbar^{2} k_{x}^{2}}{2 m^{*}}+E_{q, r}^{0} \tag{5}
\end{equation*}
$$

where $q, r=1,2,3, \ldots$ and $E_{q, r}^{0}$ does not depend on k. Show that the Density of states of the q, r-th quantum wire subband is proportional to the inverse-velocity as a function of energy.
8. London penetration depth:
(a) Take the time derivative of the London equation to show that

$$
\begin{equation*}
\frac{\partial \mathbf{j}}{\partial t}=\frac{1}{\mu_{0} \lambda_{L}^{2}} \mathbf{E} \tag{6}
\end{equation*}
$$

(b) If $m d \mathbf{v} / d t=q \mathbf{E}$, as for free carriers of mass m and charge q, show that $\lambda_{L}^{2}=m / \mu_{0} n q^{2}$.

