
PHY460: Problem Set #6 Due: Thursday 12/14 by 5 pm in Yellow PHY460 homework box between
Loomis and MRL on 2nd Floor

1. Monatomic linear lattice: Consider a longitudinal wave

us = u cos(ωt− sKa) (1)

which propagates in a monatomic linear lattice of atoms M , spacing a, and nearest neighbor interaction C.

(a) Show that the total energy of the wave is
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where s runs over all atoms.

(b) By substitution of us in this expression, show that the time-average total energy per atom is
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where in the last we have used the dispersion relation for this problem.

2. Basis of two unlike atoms: For the problem of phonons in crystals with a two-atom basis which we solved in
class, find the amplitude ratios u

v for the two branches at Kmax = π
a . Show that at this value of K, the two

lattices act as if decoupled: one lattice remains at rest while the other lattice moves.

3. Diatomic chain: Consider the normal modes of a linear chain in which the force constants between the nearest-
neighbor atoms are alternately C and 10C. Let the masses be equal, and let the nearest-neighbor separation
be a

2 . Find ω(K) at K = 0 and K = π
a . Sketch the dispersion relation by eye. This problem simulates a crystal

of diatomic molecules such at H2.

4. Enumeration of Phonon Modes: In this problem we will construct a 3 × 3 table where the rows are the spatial
dimension and the columns are the number of atoms per unit cell. For spatial dimensions d = 1, 2, 3 and for
p = 1, 2, 3 atoms per unit cell list the amount of transverse, longitudinal, acoustic, and optical phonon modes
per wave vector in the first Brillouin zone.

5. Quantum Wells Suppose the we make 3-material sandwiches out of materials A and B in the order A-B-A.
Consider only the valence band and conduction bands of both materials and describe whether or not the
electrons and/or the holes are confined into quantum wells. Draw the shapes of the quantum wells to scale
and roughly sketch the direction of the band-bending occurring from charge transfer at the material interfaces
for the conduction band states. Note: The 0 eV valence band edge of material A is not the same as the 0 eV
valence band edge for material B.

(a) WA = 1eV , EcA = 1.2eV , EvA = 0eV EFA = 0.9eV and WB = 1.1eV , EcB = 0.6eV , EvB = 0eV
EFB = 0.3eV

(b) WA = 1eV , EvA = 0eV, EGA = 1.2eV, EFA = 0.9eV and WB = 1.1eV , EvB = −1eV, EGB = 1.6eV,
EFB = 0.3eV

where Wi is the work-function, Eci and Evi are the conduction/valence band edges, EFi is the Fermi level, EGi
is the energy gap defined by EGi = Eci − Evi, and i = A,B is the index labeling the two different materials.

6. Degeneracy in Landau Levels Suppose we confine a 3D free electron in an infinite square quantum well that
confines the electrons along the z-direction so that the energy is
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where j = 1, 2, 3, . . . and d is the width of the quantum well. Suppose that d = 50nm, Lx = Ly = 1 mm,
and m∗ = 0.1m0 where m0 is the free-electron mass in vacuum. Assume that electrons can only fill the lowest
subband j = 1.



(a) What is the size of the magnetic length (`2B = ~/(eB))for B = 0, 0.1, 1, 10 and 100 Tesla?

(b) What is the cyclotron energy gap (ωc = eB/m∗) (spacing between Landau levels) for B = 0, 0.1, 1, 10 and
100 Tesla?

(c) How many states can fit in the lowest Landau Level for B = 0.1, 1, 10 and 100 Tesla?

(d) What density of electrons in cm−2 will exactly fill one Landau level for B = 0.1, 1, 10 and 100 Tesla?

(e) Each quantum well subband has its own set of Landau levels what magnetic field strength will cause the
second-lowest Landau level of j = 1 to be higher energy than the lowest Landau level of j = 2?

7. Density of States of Quantum Wires Suppose we have a free electron confined in two directions with energy

Eq,r(k) =
~2k2x
2m∗ + E0

q,r (5)

where q, r = 1, 2, 3, . . . and E0
q,r does not depend on k. Show that the Density of states of the q, r-th quantum

wire subband is proportional to the inverse-velocity as a function of energy.

8. London penetration depth:

(a) Take the time derivative of the London equation to show that
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=
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(b) If mdv/dt = qE, as for free carriers of mass m and charge q, show that λ2L = m/µ0nq
2.


