1. Consider the Krönig-Penney potential given by

$$
\begin{equation*}
U(x)=V a \sum_{s=0}^{s=N} \delta(x-s a) \tag{1}
\end{equation*}
$$

where $N=\frac{L}{a}, L$ being the system length.
(a) For this potential, in the limit $\frac{m V a^{2}}{2 \hbar^{2}} \ll 1$, find at $k=0$ the energy of the lowest energy band.
(b) For the same problem, find the band gap at $k=\frac{\pi}{a}$.
2. Consider a square lattice in two dimensions with the crystal potential

$$
\begin{equation*}
U(x, y)=-4 U \cos \left(\frac{2 \pi x}{a}\right) \cos \left(\frac{2 \pi y}{a}\right) \tag{2}
\end{equation*}
$$

Apply the central equation to find approximately the energy gap at the corner point ($\frac{\pi}{a}, \frac{\pi}{a}$) of the Brillouin zone. It will suffice to solve a 2×2 determinental equation.
3. Consider a plane $h k l$ in a crystal lattice.
(a) Prove that the reciprocal lattice vector $\mathbf{G}=h \mathbf{b}_{1}+k \mathbf{b}_{2}+l \mathbf{b}_{3}$ is perpendicular to this plane.
(b) Prove that the distance between two adjacent parallel planes of the lattice is given by

$$
\begin{equation*}
d(h k l)=\frac{2 \pi}{|\mathbf{G}|} \tag{3}
\end{equation*}
$$

(c) Show for a simple cubic lattice with side ' a ' that

$$
\begin{equation*}
d^{2}=\frac{a^{2}}{h^{2}+k^{2}+l^{2}} \tag{4}
\end{equation*}
$$

4. Consider a line of atoms $A B A B \ldots A B$, with an $A-B$ bond length of $\frac{1}{2} a$. The form factors are given by f_{A}, f_{B} for atoms A, B respectively. The incident beam of X-rays is perpendicular to the line of atoms.
(a) Show that the interference condition is $n \lambda=a \cos \theta$, where θ is the angle between the diffracted bream and the line of atoms.
(b) Show that the intensity of the diffracted bream is proportional to $\left|f_{A}-f_{B}\right|^{2}$ for n odd, and to $\left|f_{A}+f_{B}\right|^{2}$ for n even.
(c) Explain what happens if $f_{A}=f_{B}$.
5. Suppose we have a semi-conductor crystal with a direct energy gap E_{g}. Assume that the visible spectrum contains wavelengths from $\lambda=390-750 \mathrm{~nm}$. What is the minimum value for E_{g} (in units of electron volts) such that the crystal is completely transparent for all visible light?
