1. Free electron energies on the square lattice in the empty lattice approximation
(a) Show for a simple square lattice (two dimensions) that the kinetic energy of a free electron at a corner of the (first) Brillouin zone is higher than that of an electron at the midpoint of a side face of the Brillouin zone by a factor of 2 .
(b) What is the corresponding factor for a simple cubic lattice (i.e., in three dimensions)?
2. The primitive translation vectors of the 3D hexagonal/honeycomb lattice may be taken as

$$
\begin{equation*}
\mathbf{a}_{1}=(\sqrt{3} a / 2) \hat{x}+(a / 2) \hat{y} ; \quad \mathbf{a}_{2}=-(\sqrt{3} a / 2) \hat{x}+(a / 2) \hat{y} ; \quad \mathbf{a}_{3}=c \hat{z} \tag{1}
\end{equation*}
$$

(a) Show that the volume of the primitive cell is $\left(3^{1 / 2} / 2\right) a^{2} c$.
(b) Show that the primitive basis vectors of the reciprocal lattice are

$$
\begin{equation*}
\mathbf{b}_{1}=(2 \pi / \sqrt{3} a) \hat{x}+(2 \pi / a) \hat{y} ; \quad \mathbf{b}_{2}=-(2 \pi / \sqrt{3} a) \hat{x}+(2 \pi / a) \hat{y} ; \quad \mathbf{b}_{3}=(2 \pi / c) \hat{z} \tag{2}
\end{equation*}
$$

Show that this implies that the lattice is its own reciprocal, except for a rotation and re-scaling of axes.
(c) Describe and sketch the (first) Brillouin zone of the hexagonal space lattice.
3. For the primitive lattice in the previous problem draw (at least) a 5×5 set of unit cells/lattice points in the \vec{a}_{1} and \vec{a}_{2} plane, i.e. draw lattice points that are constructed as $\vec{R}=n \vec{a}_{1}+m \vec{a}_{2}$. Draw lines representing the 2d Miller indices (10), (01), (11), (21), (12), (41)
4. Show that the generically in 3d the volume of the (first) Brillouin zone is $(2 \pi)^{3} / V_{c}$, where V_{c} is the volume of a real-space crystal primitive cell. Hint: The volume of a Brillouin zone is equal to the volume of the primitive parallelepiped in reciprocal space. Recall the vector identity $(\mathbf{c} \times \mathbf{a}) \times(\mathbf{a} \times \mathbf{b})=(\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})) \mathbf{a}$.
5. Consider a periodic potential $V(x, y)=\sin (2 \pi x / a)+\sin (4 \pi y / a)$.
(a) Write down a set of primitive lattice vectors \vec{a}_{1}, \vec{a}_{2} that define the period of this potential.
(b) Fourier expand $V(x, y)=\sum_{\vec{G}} V_{\vec{G}} e^{i \vec{G} \cdot \vec{r}}$ by determining the set \vec{G} and the coefficients $V_{\vec{G}}$.
(c) Show that the $\vec{R} \cdot \vec{G}=2 \pi q$ for an integer q where $\vec{R}=n \vec{a}_{1}+m \vec{a}_{2}$.
(d) Repeat steps (a) through (c) for the potential $V(x, y)=\sin (2 \pi(x+y) / a)+\cos (2 \pi(x-2 y) / a)$.
(e) For both sets of potentials convert the continuous periodic potential into a discrete set of lattice points (draw a subset of these points which illustrates the lattice structure). This can be done by choosing a point somewhere inside a cell of each periodic potential and translating that point by the respective \vec{a}_{1}, \vec{a}_{2}. How does the resulting lattice change if we pick a different starting point within a cell of the periodic potential?
6. Using the \vec{G} derived in the previous problem
(a) Write down an explicit form for the Bloch functions for both potentials and show that they are periodic when translated by a lattice translations $\vec{R}=n \vec{a}_{1}+m \vec{a}_{2}$ for all integers n, m.
(b) Multiply each Bloch function by a suitable plane wave so that it represents an eigenstate of $H=\frac{p^{2}}{2 m}+V(x, y)$.
(c) Determine the allowed range for the wave vector \vec{q} entering the plane wave piece and draw the 2d Brillouin zone (which contains all unique values of q) for each potential.
(d) Find translation operators $T(\vec{d})=e^{i \vec{d} \cdot \vec{p} / \hbar}$ that commute with the Hamiltonian, i.e. determine the smallest allowed values of the vector \vec{d} such that $T(\vec{d})$ commutes with $H=\frac{p^{2}}{2 m}+V(x, y)$ for the two choices of $V(x, y)$. Show explicitly that $[T(\vec{d}), H]=0$. Show that the eigenstates determined in part (c) are eigenstates of these translation operators.

