
PHY460: Problem Set #1 Due: Wednesday 9/20 by 5pm in Yellow PHY460 homework box between
Loomis and MRL on 2nd Floor

Please look over the homework and grading policies in the syllabus before you begin.

1. Let us define an orthonormal basis of quantum states {|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉}
(a) Write down the value of the inner product 〈ψi|ψj〉 for i, j = 1, 2, 3, 4.

(b) Suppose that we have an operator A = i|ψ2〉〈ψ3| − i|ψ3〉〈ψ2|+ |ψ1〉〈ψ1|+ |ψ4〉〈ψ4|. Write down the matrix
corresponding to this operator. Is it Hermitian? Is it unitary? If it is Hermitian and/or unitary calculate its
eigenvalues.

(c) Is there any state |ψ〉 which obeys A|ψ〉 = 0 ? If so, construct such a state.

(d) Is it possible for A × E0, where E0 is a scalar with units of energy to represent the Hamiltonian of some
physical system? Why or why not?

2. Assume we have “crystal” made of only 3 identical atoms. Each atom has one orbital (no spin) with energy
Ea.

(a) If the atoms are arranged on a line such that an electron on an atom can only tunnel to its nearest-neighbor
with a rate -|A|/h̄ write down the 3 × 3 matrix Hamiltonian. Shift the overall energy to simplify the matrix.
Either by hand, or using Mathematica, diagonalize the matrix to get the eigenvalues and eigenstates.

(b) Now suppose the atoms are arranged on a ring so that the last site can tunnel to the first site. Write down
the 3× 3 Hamiltonian matrix. Is it the same or different than part (a)? Shift and then diagonalize this matrix
to get the eigen-states and eigenvalues.

(c) Only one of these two problems is translationally invariant. Which one? We know that if translation
symmetry is preserved then the momentum p is a good quantum number, that is the operator p̂ can be simul-
taneously diagonalized along with the Hamiltonian. Construct momentum eigenstates out of the Hamiltonian
eigenstates. What are the corresponding momentum values p for each of the 3 simultaneous eigenstates?

3. Take the previous problem, but consider N atoms instead of 3. Take Ea = 0 and let the nearest neighbor
tunneling rate be −|A|/h̄. Assume periodic boundary conditions.

(a) Write down the form of the N energy eigenvalues and N eigenstates for this system. HINT: Look at the
notes from class

(b) Suppose we start an electron in the orbital on site 1. Calculate the probability it stays on site 1 as a
function of time.

4. Show that the kinetic energy of a three-dimensional gas of N free electrons at 0 K is

U0 =
3

5
Nεf . (1)

5. (a) Derive a relation connecting the pressure and volume of an electron gas at 0 K. Hint: Use the result
of Problem 3 and the relation between εf and the electron concentration. The result may be written as
p = 2

3 (U0/V ).

(b) Show that the bulk modulus B = −V (∂p/∂V ) of an electron gas at 0K is B = 5p/3 = 10U0/9V .

(c) Estimate the value of the bulk modulus B for the metal potassium which has a Fermi energy of 1.12eV,
and an electron density of 2.60× 1028 electrons per m3.

6. For a free Fermi gas of electrons (with spin) derive the density of states D(ε) in 1d AND 2d. Hint: The result
for 3d is proven in Chapter 4, and the answer for 2d is given in the next problem.



7. Show that the chemical potential of a Fermi gas in two dimensions is given by

µ(T ) = kBT ln
[
exp

(
πnh̄2/mkBT

)
− 1
]

(2)

for n electrons per unit area. Note: The density of orbitals of a free electron gas in two dimensions is independent
of energy: D(ε) = m/πh̄2, per unit area of specimen.

8. (a) For the drift velocity theory in a uniform magnetic field (B = Bẑ) in Chapter 3, show that the static
current density can be written in matrix form as

jx

jy

jz

 =
σ0

1 + (ωcτ)2


1 −ωcτ 0

ωcτ 1 0

0 0 1 + (ωcτ)2




Ex

Ey

Ez

 . (3)

where σ0 = ne2τ/m is the Drude conductivity at zero magnetic field and ωc = eB/m is the cyclotron frequency
at a magnetic field B.

(b) In the high magnetic field limit of ωcτ � 1, show that

σyx = nec/B = −σxy. (4)

The quantity σxy is called the Hall conductivity.

(c) Dropping all terms of order (1/ωcτ)n for n ≥ 1 determine σxx in this limit.


