Preliminary Examination

- Solve for the eigenstates and energies of the $1 d$ Hamiltonian

$$
\begin{equation*}
H=\frac{p^{2}}{2 m} \tag{1}
\end{equation*}
$$

for a system of length L with periodic boundary conditions. That is, solve the Schrodinger equation with these boundary conditions.

- Solve for the eigenstates and energies of the two lowest energy states for the Hamiltonian in Eq. 1 assuming that there is an infinite potential barrier at $x=0$ and $x=L$.
- What is a boson? What is a fermion? What is the Pauli exclusion principle?
- The generator of spatial translations in 1 d is the momentum operator \hat{p} which, in the coordinate representation is written

$$
\begin{equation*}
\hat{p}=-i \hbar \frac{d}{d x} \tag{2}
\end{equation*}
$$

What is the general relation between the translation generator \hat{p}, momentum conservation, and a generic Hamiltonian H ? Assuming periodic boundary conditions, does the Hamiltonian in Eq. 1 conserve momentum? Why or why not?

- If we have an electromagnetic vector potential \vec{A} how can we determine the magnetic field? What is a gauge transformation of the vector potential? Can we perform a gauge transformation that will change the value of the magnetic field?
- Do/look-up the integral

$$
\begin{equation*}
I(x)=\int_{-\infty}^{\infty} e^{i k x} d k \tag{3}
\end{equation*}
$$

Note that the answer should depend on x.

- Do the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta(x) d x \tag{4}
\end{equation*}
$$

for the Dirac δ-function.

- Plot the function

$$
\begin{equation*}
\int_{-\infty}^{x} \delta\left(x^{\prime}-2\right) d x^{\prime} \tag{5}
\end{equation*}
$$

as a function of x.

- Draw a circle and a square. Describe the rotational symmetries of each shape. Which one has a continuous rotation symmetry? Which one has a discrete rotation symmetry? For the shape with the discrete symmetry list all the possible rotations which leave the shape invariant.
- Using the Einstein summation convention for summing over repeated vector/tensor indices write out the explicit forms for the following (assuming all indices i, j can take the values $1,2,3$).

$$
\begin{gather*}
a_{i} b_{i} \\
a_{i} M_{i j} b_{j} \\
M_{1 i} a_{i} \tag{6}
\end{gather*}
$$

- Dirac Bracket notation: Assume we have a Hamiltonian H whose eigenstates $\left|\phi_{i}\right\rangle$ form a complete set of orthonormal states. Formally expand a generic states $|\psi\rangle,|\theta\rangle$ in terms of the complete basis and calculate $\langle\theta \mid \psi\rangle$, simplifying the result as much as possible. Assume each of the states $\left|\phi_{i}\right\rangle$ has an energy eigenvalue E_{i}, write the Hamiltonian in terms of the operators $\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|$.

