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Philosophical Issues in Newtonian Mechanics

The relation of mathematics to physics

It was Galileo who said, “The book of nature is written in the language of mathematics”,
but Newton who was the first to put this dictum into effect quantitatively. It is not
clear that even in the early 21st century, the symbiosis is yet perfect, but physics and
mathematics are indeed so intimately intertwined that most physics textbooks do not
distinguish consciously between those steps in their reasoning that follow by purely
mathematical deduction and those that require some physical intuition or assumption
(in an ideal world, they would be required to use different types for these two kinds of
steps!).∗

What is the nature of the mathematical “truth”? The Greeks were, reasonably,
impressed by the certainty of mathematical demonstration, as exemplified par excel-
lence in Euclidean geometry, at least to a very high degree of understanding of it from
purely a priori considerations. (This applies particularly to Pythagoras, Plato, and their
disciples.) In modern times, one can perhaps distinguish three major classes of view:

1. David Hume held that all the truths of mathematics are analytic, that is, true by
virtue of the meaning of the concepts that enter them. (The traditional paradigm
of a [non-mathematical] analytic statement is one such as “All bachelors are un-
married”, which clearly conveys no new information to anyone who understands
the standard meaning of the term “bachelor”).

2. John Stuart Mill held, on the contrary, that mathematics tells us true empirical
facts about the world and that it is justified by that alone. In other words, the
truths of mathematics are “synthetic” (the opposite of “analytic”), but by that
same token are not necessarily infallible.

3. To Immanuel Kant, mathematics was the paradigm of a kind of knowledge that
he called “synthetic a priori”; that is, knowledge that, because it is an intrinsic
consequence of the way in which we perceive the world, can be known to be true
without detailed inspection of the external world, but that is nevertheless more
than simply a reflection of the meaning of the concepts involved. One of Kant’s
favorite examples of a synthetic a priori statement about the physical world is that
it satisfies the axioms of Euclidean geometry – this is, in retrospect (as we shall
see when we come to general relativity), an unfortunate choice.

A possible, somewhat commonsensical compromise view, is that while the truth of
mathematical statements is self-contained and needs no reference to the physical world to
verify it, such statements are only useful in the context of physics if there happen to exist
classes of objects in the world that obey the fundamental axioms of the mathematical
structure in question. For example (Hawkins), in a world that consisted only of clouds, it

∗Cf. E. P. Wigner, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences”, Com-
munications on Pure and Applied Mathematics XIII, 1 (1960).
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is unlikely that we would find the concept of the natural numbers very useful; conversely,
we should not be particularly surprised if, having postulated a set of axioms which we
believe to be in fact satisfied by a class of objects in the physical world that is of interest
to us, we find that these axioms are also satisfied by other classes of objects that may
or may not correspond to something “out there” and/ or of practical interest (Hawkins,
The Language of Nature, pp. 20-1, gives the example of the Peano axioms for the natural
numbers).

Ideas of space and time
(Sklar, pp. 15-25)†

A major subject of controversy in the late seventeenth century was the nature of space
and time. As we have seen, (1.6), Newton was a firm believer both in the idea of abso-
lute space (“the sensorium of God”) and that of absolute time. In contrast, his German
contemporary Leibniz (a co-inventor with Newton of the branch of mathematics we now
know as “calculus”) held a “relational” view of both; space is essentially nothing more
than a set of relations between material objects, and time similarly a set of relations be-
tween events. This clash of viewpoints was made explicit in the famous correspondence
between Leibniz and Newton’s disciple Clarke.‡

[Leibniz: principles of sufficient reason and of the identity of indiscernibles.]

Evidently, each point of view faces some obvious problems. For Newton, the most
obvious difficulty is: what determines the position in “absolute” space at which the
Universe sits? (For Newton and most of his contemporaries, the Universe is finite, and
the principle of “identity of indiscernables” would suggest that no one position in space
is favored over any other. This kind of argument may not, at first sight, look that
convincing, but we shall see later it has some remarkably useful applications in modern
quantum and statistical physics.) On the other hand, the Leibnizian view has its own
problems: (a) what is the status of “times” at which no event occurs, or points in space
at which there is no material object – do we have to introduce the idea of “potential”
events or bodies? (b) if (e.g.) space is a set of relations between material bodies, what
is it exactly that constrains this set of relations (e.g., so that Pythagoras’ theorem is
obeyed)? (c) how do we quantify the amount of time, etc.? It is ironic that, with
hindsight, Newtonian mechanics seems to be more naturally formulated in a relationist,
rather than an absolutist, framework.

†A good general encyclopedic reference for some of the topics in this lecture (and, broadly, the
more “philosophy”-oriented topics on physics in this course) is the Stanford Encyclopedia of Philosophy.
For example, see “Absolute and Relational Theories of Space and Motion”, https://plato.stanford.edu/
entries/spacetime-theories/, and “Newton’s Views on Space, Time, and Motion”, https://plato.stanford.
edu/entries/newton-stm/.
‡This is available in full in H. G. Alexander, The Leibniz-Clarke Correspondence, on reserve at the

library. A useful summary is given by H. Erlichson, American Journal of Physics 35, 99 (1967).

https://plato.stanford.edu/entries/spacetime-theories/
https://plato.stanford.edu/entries/spacetime-theories/
https://plato.stanford.edu/entries/newton-stm/
https://plato.stanford.edu/entries/newton-stm/
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Space and time coordinates

It is convenient at this point to introduce the idea of an “event” and its time and space
“coordinates”. (This idea, although certainly implicit in the work of Newton and his
successors, was only made completely explicit by Einstein two centuries later; but it
makes the subsequent discussion a bit easier.) An “event” is simply some “happening”
which occurs at a definite time and place: e.g., the firing of a gun, a proposal of marriage,
the triggering of a Geiger counter by a cosmic ray... and so forth. (Obviously, a certain
amount of idealization is involved here, as so often in physics: each of these “events” in
real life lasts a finite time and cannot be exactly localized in space, but for purposes of
illustration, they will do.) Having unambiguously identified the “event” of interest, we
now want to specify its time and space “coordinates” – that is, give numbers which tell
us exactly when and where it occurred.

To this end, we introduce the idea of a “standard clock” and a “standard ruler”. The
standard clocks used in the history of physics have been of various types: the King’s
heartbeat, a sandglass, a pendulum clock, an atomic maser... In just about every case
there are some problems; for example, if a pendulum clock is moved to an upstairs room,
it will operate slightly slow as compared to a clock of identical construction downstairs.§

Let us imagine that we have solved this kind of problem by some arbitrary rule, e.g., that
the standard clock must operate at sea level. Then we can define the time differences
between two events 1 and 2 ( to a good approximation) simply as the number of ticks
of the clock between 1 and 2. An immediate (and apparently trivial) consequence of
this definition is that if the time difference between event 1 and the (later) event 2 is,
say, 5 minutes, and the time difference between 2 and the (later) event 3 is 6 minutes,
then automatically the time difference between 1 and 3 is 11 minutes; or more generally
and formally, the time difference ∆tij between two event i and j satisfies the simple
additivity relation:

∆t31 = ∆t32 + ∆t21 (1)

Notice that in the above discussion, we have nowhere assumed that the two events
that are compared occur at the same point in space; they may or may not. If they do
not, then there may be some practical difficulties in evaluating the time difference, but
these can apparently be overcome. In particular, there is nothing (so far!) to prevent us
establishing that two events occur at different places at the same time.

If we wish to define not only the difference in time between two events, but also the
absolute time of a single event, then in addition to our standard clock we need to choose
some standard origin of time. This choice is purely conventional, and while most people
nowadays use a reckoning of hours, minutes, and seconds, with the “zero” at midnight,
the “origin” of the year still differs throughout the world (the U.S. and Europe use the
birth of Christ, the Muslim world the Hegira, and the Japanese the accession of the
current Emperor).

§(For the cognoscenti only): this effect (or at least the major part of it) has nothing to do with
general relativity; it is simply a consequence of the fact that the gravitational acceleration decreases
with distance from Earth’s center.
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Next consider the choice of a “standard ruler” to define spatial coordinates. For
the moment, let us restrict ourselves to events occurring at the same time. Then we
could, for example, choose as our “ruler” the King’s foot, the standard meter rod in
Paris or the wavelength of the light emitted in a particular atomic transition. Again,
the conditions need to be carefully specified: e.g., the meter rod must be kept at a
certain temperature, humidity, etc. However, given these conditions, the length of the
ruler is taken by definition to be independent of, e.g., the time of day or its orientation
(the direction in which it lies). We can now define, approximately, the space interval
(distance) between two events occurring simultaneously by laying (a set of replicas of)
our standard ruler between them and seeing how many we need. Do we have additivity
similar to that for time intervals? If the three events 1, 2, 3 that we consider happen to
lie in a straight line, the answer is yes: if event 2 is to the right of 1 by 2 meters, and 3
is to the right of 2 by 3 meters, then 3 is to the right of 1 by 5 meters, or more formally:

∆x31 = ∆x32 + ∆x21 (one dimension) (2)

However, even in this case, there seems intuitively to be a difference between time and
space: somehow, “later” and “earlier” seem more fundamental categories than “to the
right of” or “to the left of”! This may be because by changing our point of view (i.e.,
moving in real 3-D space) we can reverse the “left-right” distinction, whereas no such
reversal seems possible for the “earlier-later” one. But this already indicates that it is
essential to generalize the notion of space coordinates.

The world we live in is three-dimensional (or at least appears to be so!). This is
equivalent to saying that we need three independent numbers to specify the position
of an event. At this point, it is convenient to proceed in a different order from that
used above for the time, and already define an origin of space coordinates. Just as in
the case of time, this is purely conventional; geographers generally use the North Pole,
but for local purposes in Urbana, the “conventional” choice is the intersection of Race
and University. Having chosen our origin, we now set up a “grid” – that is, a set of
imaginary rods parallel to three mutually perpendicular directions. What do we mean
when we say that two directions are “mutually perpendicular”? We can define this by
drawing a circle and dividing the circumference into four equal parts with marks; the
lines from the center to two neighboring marks then define mutually perpendicular axes.
An apparently equivalent alternative definition is via Pythagoras’ theorem: two axes
are mutually perpendicular if and only if, when we construct a triangle by taking unit
intervals along the two axes, the length of the hypotenuse is

√
2. (Actually, as we shall

see when we come to general relativity, the two definitions are equivalent in general
only under the assumption that the geometry of space is “Euclidean”; fortunately, even
in general relativity, this is true if the limit is infinitesimal triangles.) The “absolute”
orientation of the three axes, as distinct from their mutual perpendicularity, is a matter
convention: in ordinary life, one usually chooses one axis to be vertical (i.e., parallel to
the local gravitational field) and the two horizontal ones to be north-south (N-S) and
east-west (E-W).

Having chosen our standard ruler and origin and set up our “grid”, we now define the
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space coordinates x, y, z, of a given event simply as the number of standard rulers we
need to place along each (arbitrarily-labeled) axis to reach form the origin to the event in
question. Thus, for example, if we choose our origin at ground level at the intersection of
Race and University and arbitrarily choose x as the “N-S” coordinate, then the “event”
that is taking place in this lecture room now would have space coordinates approximately
given by:

x = −500 m, y = −1500 m, z = −5 m (3)

Note we still have additivity for each of the coordinates separately (e.g., if 1 is 2 m W
of 2 and 2 is 3 m W of 3, then irrespective of their N-S and vertical coordinates, 1 is 5
m W of 3!) I.e., we still have equation (1) and also:

∆y31 = ∆y32 + ∆y21, ∆z31 = ∆z32 + ∆z21. (4)

However, let us consider the total distance ∆Sij between two events (or, for that matter,
two points), assuming for simplicity that they are both on Earth’s surface, so that
∆zij = 0. We have by Pythagoras’ theorem

∆Sij =
√

(∆xij)2 + (∆yij)2 (5)

and it is easy to convince oneself that ∆Sij does not satisfy the additivity relation (e.g.,
if Loomis Lab is 500 m from the Union, and the Union is 500 m from the Library, it
does not follow that Loomis is 1000 m from the Library – this would be true only if the
three buildings were in a straight line).

Choice of reference frame

So far, so good; the definition of the space coordinates of simultaneous events appears to
involve no particular difficulties. But what about events that occur at different times?
So long as we are content always to refer events to the same reference frame (e.g., that
whose origin is fixed at ground level, at Race and University, with axes vertical, N-S and
E-W) we can proceed just as above and there is no extra difficulty. However, there are
cases in which we may not wish to do this.

Imagine a train traveling at a constant velocity¶ (speed) v, and a passenger who
drops two stones successively at an interval of ten seconds from the same window. How
will these two events be described (a) by an observer at the side of the track, and (b)
by the train passenger himself?

(a) The observer at the side of the track will say “The first stone was dropped at
12 o’clock at this crossing; the second stone was dropped at 10 seconds past 12 o’clock,
some distance up the line.” How far up? Well, if, for example, the train is traveling at
30 m/s, then it will be 300 m up. More generally, the distance between the two events
as measured by a “ground” observer (call it ∆xgr) will be

∆xgr = (distance moved by the train relative to the ground) = v∆t (6)

¶What, exactly, does this mean? We can, if necessary, define “velocity” by the ensuing argument, see
below. For the moment, we will take the concept as intuitively obvious.
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where ∆t is the time interval between the two events.
(b) On the other hand, the natural frame of reference for the passenger himself is

that fixed on the train; i.e., he will say (unthinkingly, perhaps) “I dropped stone 1 at 12
o’clock, and stone 2 ten seconds later, from the same point.” I.e., the distance between
the two events as measured by someone on the train, ∆xtr, is simply zero.

More generally, suppose the passenger had walked a distance ∆x (say 10 m forward)
up the train between dropping the stones. Then obviously we will have

∆xtr = ∆x (= 10 m) (7)

whereas the observer on the ground will now say that the distance ∆xgr between the
two events is 300 m + 10 m = 310 m. More generally, we have

∆xgr = ∆xtr + (distance moved by the train) (8)

and it is clear that this formula is valid whether or not the train is moving with constant
velocity. Suppose it is – then we have

∆xgr = ∆xtr + vtr∆t (vtr = constant) (9)

Note that we can now, if we wish, reverse the argument, as it were, and define the
velocity of the train vtr by the statement that if ∆xtr = 0 (stones dropped from the
same window), then vgr ≡ ∆xgr/∆t (cf. previous lecture).

It is clear that this argument is a very general one and it applies to any two observers
who are moving with constant relative velocity. If A is moving with constant velocity
v relative to B, and we denote quantities as observed by A by unprimed symbols and
those observed by B by primed ones, then we have quite generally

∆x′ = ∆x + v∆t (10)

Note carefully that it is implicit in the argument that both observers measure the same
time interval between the events – i.e., formally (and apparently trivially!):

∆t′ = ∆t (11)

The transformation between frames of A and B given by the two boxed equations is
called a “Galilean transformation”.

One immediate and apparently trivial consequence of the above arguments is the
additivity of velocities (or more precisely components of velocity).‖ It is more or less
intuitively obvious that if the train is traveling at 30 m/s, and I walk forward along
the train at 1 m/s, then the observer on the ground sees me traveling at 31 m/s. More
generally and formally: Suppose that a given body (e.g., me) is present at two events
(e.g., the two stone droppings). We can then define my velocity as seen by a particular

‖That it did not seem “trivial” to all of Newton’s contemporaries is indicated by the fact that he felt
it necessary to spend some time on this point (Principia, p. 7).
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observer as the ratio of the space interval ∆x measured by that observer to the time in-
terval ∆t measured by him. But, from the Galilean transformation, the relation between
the ratios seen by the “primed” and “unprimed” observer is

∆x′

∆t′
≡ ∆x′

∆t
=

∆x + v∆t

∆t
=

∆x

∆t
+ v (12)

i.e., my velocity as seen by B is that seen by A plus the velocity of A relative to B, or:

vB = VA + VAreltoB (13)

Note that this relation applies to the different components of velocity. It does not in
general apply to the total velocity; e.g., if a boat is traveling at 4 mph relative to shore,
and I walk at 3 mph across the boat (i.e., perpendicular to the motion of the boat), my
velocity relative to the shore is not 7 mph (instead, in this particular case, it is 5 mph,
by Pythagoras’ theorem).

Galilean invariance

We now return to Newton’s laws, taking for granted (a) the definition of a common
“time” that can be agreed upon by all observers, and for the moment (b) that we have
an independent criterion (independent, that is, of the laws themselves) of when the
external forces are acting or not. (E.g., with a good approximation we can assume that
for a puck moving horizontally on smooth ice, there is no appreciable horizontal force.)

For a body whose mass is constant in time and on which no external force acts,
Newton’s first law simply states

velocity = constant

But we did not yet specify our reference frame! In fact, the velocity will be different as
viewed from different frames. However, it is easy to see that as long as those frames are
moving uniformly with respect to one another, this does not matter. Recall the result:

vB = vA + vAreltoB (14)

Suppose then that the velocity seen by A is constant, and moreover A is moving uni-
formly relative to B; i.e., vAreltoB = constant. Then it immediately follows that B also
sees a velocity that, though different from that seen by A, is also constant. Thus, if
Newton’s first law is valid in some frame of reference S, then it is also valid in any
other frame moving with constant velocity relative to S – i.e., related to it by a Galilean
transformation. Thus, the first law defines not a single unique reference frame, but a
class of frames, which we call “inertial”. We postpone for a moment the question of
what exactly it is that picks out the class of inertial frames.

It is now immediately clear that not only Newton’s first law but also his second is
invariant under Galilean transformation. If we assume that the mass of the body in
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question is constant (true in the overwhelming majority of cases of practical interest),
then N2 can be written

acceleration ≡ ∆v

∆t
=

applied force

mass
(15)

Now, from the above relation (eq. 1), the changes in ∆t of the velocity as seen by different
observers are related by:

∆vB = ∆vA + ∆(vAreltoB) (16)

However, if A is moving relative to B, the last term is by definition zero, so ∆vB =
∆vA and the acceleration seen by B is the same as that seen by A. Thus, if Newton’s
second law is valid in some frame S, it is equally valid in any frame related to S by a
galilean transformation; thus N2, like N1, defines a class of frames. Since N1 is a special
case of N2, the class so defined must be the inertial frames. Notice, however, that there
is a crucial assumption implicit here, namely that the applied force seen by A is the
same as that seen by B. For forces of the type given as examples by Newton (percussion,
air pressure...) this assumption gives rise to no particular difficulty; electromagnetism,
as we shall see in lecture 10, is a different matter.

Finally, let us consider Newton’s third law: if the masses of the bodies involved are
constant, then this can be written (∆v now indicates the change in velocity, either over
a given time interval or in a complete collision):

m1∆v1 = −m2∆v2 (17)

Because ∆v1 and ∆v2 (as distinct from v1 and v2 themselves) are unaffected by Galilean
transformations, this means that if N3 is valid in a frame S, then it is valid in any frame
moving uniformly with respect to S. Again, for consistency, it is necessary to choose the
class of frames as defined as the inertial frames.

Thus, the laws of nature (N1-3) look the same in all inertial frames. This does not,
of course, mean that, e.g., we cannot tell whether we are moving with respect to Earth
(we can tell this not only by direct inspection, but by effects such as air resistance,
etc.), but it does mean that when this kind of possibility is shut off, as in Galileo’s
“ship’s cabin” thought experiment, there is no way of telling. On the other hand, if the
frame is not inertial (e.g., is rotating), we can most certainly tell: try walking across a
merry-go-round!

What exactly is it that makes a particular class of frames the “inertial” frames?
According to Newton, it is because there is a particular one of the inertial frames that
is that of “absolute space”, while later Mach suggested that the inertial frames are de-
fined by the mean behavior of the matter (i.e., stars, etc.) in our neighborhood in the
Universe. Since Newton believed that the fixed stars are at rest in absolute space, the
outcome is the same. More on that later (Newton’s bucket, Weinberg’s “pirouette”...).
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Are Newton’s laws definitions of “force”?
(Hesse, pp. 134-43)

There are two obvious possibilities.
(a) Suppose that we regard the existence of an externally applied force (e.g., muscular
or elastic) as something recognizable independently of its accelerating effect.

1. If the forces in question are between different bodies, then N3 is independent of N1
(which does not by itself state that the total momentum of a system of (interacting)
bodies is conserved); thus, N3 has to be regarded as an empirical statement.

2. As regards different parts of the same body (on which no external forces act), N1
as applied to that body implies that N3 applies to interactions (if any) between the
parts (otherwise the body as a whole would accelerate even though no externally
applied forces act on it, contrary to N1).

(b) Alternatively, we can regard N1 (and N2) as definitions – i.e., any acceleration is
to be automatically regarded as evidence for the existence of force. In this case, it is
an empirical fact that not only systems of bodies, but also single bodies whose parts
interact, satisfy conservation of total momentum (i.e., that N3 applies).

Hesse (loc. cit.) argues that Newton took viewpoint (b); for our purposes, (a) is more
convenient. If so, then clearly we need (inter alia) to ask: “What is the (identifiable)
force that is responsible for the vertical acceleration of bodies on Earth, and for the
acceleration of the planets?” I.e., we must postulate a gravitational force.

The gravitational force and action at a distance

The feature of Newton’s mechanics that both he and his contemporaries liked least was
that the gravitational force is supposed to act at a distance, and moreover instanta-
neously. The whole idea of action at a distance, instantaneous or not, was strongly
resisted by 17th-century thinkers; it was associated in their minds with “occult proper-
ties”, and where such effects seemed to be indubitably observed, as in magnetism, people
went to extreme lengths to try to provide a “local” physical mechanism (i.e., one that
worked by contact – cf. Aristotle!), e.g., Descartes with his “vortex” theory.

Newton himself certainly did not believe in action at a distance:

It is inconceivable, that inanimate brute matter should, without the media-
tion of something else, which is not material, operate upon, and affect other
matter without mutual contact... And this is one reason, why I desired you
would not ascribe innate gravity to me. That gravity should be innate, in-
herent, and essential to matter, so that one body may act upon another, at a
distance through a vacuum, without the mediation of anything else, by and
through which their action and force may be conveyed from one to another,
is to me so great an absurdity, that I believe no man who has in philosoph-
ical matters a competent faculty of thinking, can ever fall into it. Gravity
must be caused by an agent acting constantly according to certain laws; but
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whether this agent be material or immaterial, I have left to the consideration
of my readers.

and the idea was severely criticized by others – e.g., by Leibniz:

A body is never moved naturally, except by another body which touches it
and pushes it; after that, it continues until it is prevented by another body
which touches it. Any other kind of operation on bodies is either miraculous
or imaginary.

As late as 1730, Bernoulli won a prize from the (French) Academy of Sciences by
explaining Kepler’s third law in terms of a “vortex” hypothesis. It was only in the late
18th century, as more and more successes of Newton’s law of universal gravitation were
chalked up, that people finally came to terms with the idea – only to have it shattered,
as we shall see, by later developments.

Determinism

Let us first consider the motion of a single body in a situation when, given its position,
we know exactly the forces acting on it. Good approximations include the motion of a
cannon ball fired from a gun (the force is simply the gravitational force in the vertical
direction due to the Earth∗∗), or a planet moving around the Sun (the force is the
gravitational force due to the Sun, which, as we have seen, is in the direction of the
latter and proportional to the inverse square of the distance from it). Suppose that at
some initial time (call it ti), we know the exact value of the position of the body and
also the exact value of its velocity. For simplicity of notation only, I shall consider a
one-dimensional motion, and therefore denote the position by xi and the velocity by vi.
Consider now the situation at a slightly later time, ti + ∆t (where eventually we are
going to let ∆t tend to zero). By hypothesis, we know the force Fi acting on the body
at point xi, and if ∆t is small enough, it will still be very close to xi at ti + ∆t, so we
can write that the acceleration over the time interval ∆t is approximately

ai = Fi/m (18)

But acceleration is just rate of change of velocity, so the change in velocity over the time
interval ∆t is just ai∆t, and so at ti + ∆t we have

vi(ti + ∆t) = vi + ai∆t = vi + (F/m)∆t (19)

and it is known exactly (in the limit ∆t → 0 when the approximation becomes exact).
What about the position? Since the velocity averaged over the interval ∆t is close to
the initial one vi, we have, approximately for the position at time ti + ∆t,

x(ti + ∆t) = xi + vi∆t (20)

and again it is known exactly. In other words, in the situation considered:

∗∗For the moment, we will neglect the frictional resistance due to the air, although we shall have to
return to this question in a later lecture.
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If we know the position and velocity of the body exactly at time ti, then (in
the limit t→ 0), we also know it exactly at time ti + ∆t.

It is clear that we can now iterate this argument, and thereby reach the conclusion:

If we know the position and the velocity at some initial time ti, then we know
it at all subsequent times!

If this theorem applied only to single bodies like the cannon ball or the planet, it would
perhaps not be very interesting. But it is easy to see that it also applies to an arbitrary
collection of bodies (provided that not only the external forces, but also the forces acting
between them, are exactly known), and moreover in three dimensions just as well as in
one. So, under the same conditions:

Complete knowledge of the positions and velocity of all the particles of the
system at an initial time ti determines the complete behavior at any later
time.

Does this mean that the past uniquely determines the future (but not vice versa)?
Well, yes and no! We can just as well run the argument backward: if we know the values
xf and vf of position x and velocity v at some “final” time tf , then we equally know
them at a slightly earlier time tf −∆t, and so on to an arbitrary previous time. Again,
if we know them at some intermediate time, we can determine both the future and the
past behavior. In fact, it even turns out (though this is less obvious) that if we know
just the position of the body at any two different times, we can determine the complete
behavior.†† Again, these statements generalize to an arbitrary collection of bodies and
to three dimensions.

So, does the past determine the future? Or the future the past? Or...

††For cognoscenti only: what we are saying here is that since Newton’s second law is second order in
time, any two independent pieces of information suffice to determine the complete solution.


