UIUC Physics 406: Acoustical Physics of Music

Course Syllabus

Professor Steven Errede, 435 Loomis Laboratory, serrede@illinois.edu, 333-0074/4452

Introduction to Course, Course Structure, Organization:

- This course meets 3×/week, 4 credit hours.
 * Lecture/demos Tues & Thurs 12:30-1:50 pm in 6105 ESB, and:
 * 3 hr Lab Friday, either: Lab1: 11am-2pm, or Lab2: 2:00-5:00 pm in 6105 ESB
- Lecture/demo/lab/hands-on interactive/investigative-type format
- 1 HW assignment/week, lecture related.
- Take-Home Midterm & Final Exams.
- Lecturer: Steve Errede 435 Loomis, email: serrede@illinois.edu
 Phone(s): 333-0074 (office); 333-4225 (lab), 333-4452 (HEP sec’y)
- 2 TAs: Matt Ziemann mrziema2@illinois.edu, John Whitman jwhitma2@illinois.edu
- UG Lab Teaching Specialist: Jack Boparai 6101 ESB, email: jboparai@illinois.edu
- Course Project - of own choice (must be relevant to course), can be wide-ranging
 * Brief oral presentation on project @ midterm
 * Final oral presentation & final written report @ end of semester, substantive effort.
 * Final written report will be posted on P406POM Student Reports web page.
- Web page for course, URL: http://courses.physics.illinois.edu/phys406/
- Final grade: mix of HW, midterm, final exams, active participation in class & labs, project midterm & final oral presentation(s) and final report(s) on project(s).

Course Content:

- Essentially acoustical physics, with emphasis on music and musical instruments.
- What is music? For humans? For other animals?
- Why does music exist? Why is it important? For humans? For other animals?
- Why/how did music evolve? History of music/musical instruments.
- Human music, music associated with other living creatures…
- Importance of music today in our societies. In future? Evolution of music?
- Music in Nature/Music of the Cosmos… earth, sun, other plants, universe…
- Scientific study of music/musical instruments (history):
 * Ancient Greeks - Pythagoras (~ 500 BC) at least. Earlier endeavors?
 * Since then: Aristotle, Ptolemy. Huygens, Euler, Ohm, Young, Helmholtz
- How is music made?
 * (Collective) vibrations of atoms of matter
 * Matter vibrations coupling to air - collective vibrations of air molecules
 * Propagation of sound waves in air, other media, fluids & solids.
- How/why is music heard/perceived? Human & animal hearing/sound perception
 * Evolution - why is it beneficial to perceive sound?
 * Psychoacoustics - study of human hearing
 * How human ear(s) + brain work
 * Hearing in other animals
- Simple Vibrating Systems
 * Simple harmonic motion - e.g. mass on a spring, tuning fork
 + Frequency, period, wavelength, amplitude, phase, energy, energy loss/damping/dissipation, power
* Travelling waves and wave propagation in a medium
 + One-dimensional medium - bead-spring system
 + One-dimensional transverse and longitudinal waves
 + Wave propagation in two and three dimensions
* One-dimensional standing waves
 + Sum/superposition of two counter-propagating travelling waves
 + Boundary conditions for standing waves
 o Reflection, refraction, diffraction of travelling waves
 o Interference effects
 o Resonance effects
 + Transverse standing waves, e.g. on a guitar/violin/piano string
 + Longitudinal standing waves, e.g. in air - organ pipes/flutes
* Standing waves in two and three dimensions
 + Vibrating membranes/plates - drums, cymbals, musical saw, Chladni’s law
* Doppler effect - source/observer motional effects on sound waves in air.
* Beats - interference between two frequencies
* Distortion - non-linear response & generation of harmonics of fundamental
* Intermodulation distortion - non-linear response with 2 or more frequencies.
* The Human Ear/Human Hearing
 + Structure of the outer & inner human ear, and its response to sound
 + Why two ears? Phase sensitivity, source location determination.
 Human hearing localization optimized for sound propagation in air…
 + Sound Intensity, I (Watts/m²)
 + Sound Intensity Level, L (decibels)
 o Threshold of hearing, threshold of pain, noise levels/occupational exposure
 + Sound Pressure Level, Lp (decibels)
 + Loudness Level (phons)
 + Loudness (sones)
* Musical Tone Quality/Timbre
 + Pure tones/simple tones - sine/cosine waves
 o have well-defined frequencies/wavelengths, amplitudes & phases
 + Partial tones (= partials) - assembly of pure tones
 o = a mix of different frequencies & amplitudes
 + Complex tone - superposition of simple tones - complex waveform
 + Periodic complex waveform - has fundamental + harmonics/overtones
 o harmonics/overtones = integer multiples of fundamental frequency
 o phase sensitivity of human ear to complex tone/tone quality/timbre
 o harmonic (Fourier) analysis of musical instrument tones
 + Formants - resonances
 + Sound Envelope - attack time/decay time
* Sound Effects
 + Vibrato, tremelo, chorus, phase shift/flanging, reverberation/echo, etc.
 + Noise
 + Subjective tones - (non-linear response/distortion in the ear)
 + Auditory sensation “tricks”
* Musical intervals, musical scales, tuning and temperament
 + Consonance/dissonance
 + Discrete frequencies = scale
+ Frequency ratios: unison, octave, fifth, fourth, third, etc.
+ Interval = separation of two notes on a scale
* Musical Scales - Pentatonic, Pythagorean, Meantone Tuning, Just, Just Diatonic, Tempered Scales
+ whole tones, semi-tones, cents
+ pitch standard(s)
+ octave notation
+ frequencies of musical notes, e.g. in tempered scale
* Acoustics
 + Acoustics of auditoriums, recording studios, home listening rooms, etc.
 o Interference, sound absorption, Sabine eqn.
 o Reverberation & echo, spectral, octave & 1/3-octave band measurements of room/auditorium acoustics, T60, T30 measurements, etc.
 o Electronic Sound Reinforcement
 o Computer analysis/modeling electro-acoustics of auditoriums/studios/etc.
 + Acoustics of loudspeaker enclosures
 + Production of musical sounds by musical instruments – mimic human voice, and/or natural human rhythms (percussion instruments).
 + Human Voice & Singing – 1st musical instrument – 1-D vibrational system.
 o vocal chords/larynx/hyoid bone/tongue/chest-mouth-nasal cavity & formants
 o Formants & use of formants/professional singers, Tuvan throat singing, etc.
 + Stringed Instruments
 o Physics of plucked & bowed vibrating strings
 o Plucked: acoustic/classical and electric guitar(s), mandolin, ukulele, etc.
 o Bowed: violin, viola, cello, bass
 o Hammered: piano, hammered dulcimer
 + Woodwind Instruments
 o Physics of whistles, reeds & organ pipes
 o Whistles: Whistle, recorder, flute
 o Reed: Clarinet, oboe, bassoon, saxophone
 o Pipe: Pipe organ, bagpipes
 + Brass Instruments
 o Physics of mouthpiece, bell
 o Trumpet, trombone, French horn
 + Percussion Instruments
 o Physics of vibrating bars, plates, membranes
 o Xylophone, glockenspiel, Fender-Rhodes piano
 o Drums (all kinds), cymbals (all kinds)
 o Musical saw
 + Electronic Musical Instruments
 o Electro-mechanical organs - e.g. Hammond B3
 o Electronic organs/keyboard instruments
 o Analog and Digital Sound Synthesizers,
 o MIDI & MIDI instrument
 o Computer-generated music
 o Electronic Stringed Instruments – guitars, bass guitar, cello, mandolin..
 + Analog & Digital Recording of Music & Sound
 o Edison phonograph - cylinder & disk records (analog)
o Magnetic wire and tape recorders (analog & digital)
- Digital recording (e.g. to CD, DVD, etc.)
- Analog input transducers - condenser and dynamic microphones
- Analog output transducers - loudspeakers
+ Music in the near-term and distant future
- Human music - culture & society. New kinds?
- Development of new kinds of musical instruments & technology.
- Evolution of music in animals? Human - animal music interactions?
+ Sound Analysis Methodology & Analysis of Musical Sounds
- Complex Harmonic Sound Fields – Euler’s eqn., complex immittances, sound intensity, linear and angular momentum density, group and phase velocity, energy density.
- Examples of Complex Sound Fields – near & far fields of acoustic monopole, dipole, quadrupole, … planar circular piston on oo-baffle…
- Harmonic/Fourier Analysis/Fourier Synthesis – complex waveforms
- Pressure and Particle Velocity Transducers
- Phase Sensitive Measurements – Lock-In Amplifier Techniques
- Near-Field Acoustic Holography – modal vibrations of drums, cymbals, acoustic guitars, etc.
- Spectral Analysis Techniques – continuous & discrete Fourier transforms, FFTs, convolution, correlation, autocorrelation, cross-correlation, Wiener-Khinchine theorem, power spectral density, coherence function ….
- Digital Signal Processing/Digital Filtering
- Wavelet Analysis

- Physics of Electric Guitar Pickups, modeling EM properties of electric guitar pickups
- Physics of Loudspeakers, modeling of acoustic and EM properties of loudspeakers
- 1/f Noise in Human Music
- Diversity/Universality of Human Music
- Sustainability & Environmental Issues for Musical Instruments
 - Use of renewable natural resources for musical instruments – tonewoods….