Uncertainties in Measurements

Anne Sickles (based on slides by Gina Lorenz, Liang Yang, Dave Herzog, Eugene Colla) February 5, 2019

- any measurement must include uncertainties
 - any report must include a discussion of the uncertainties
- two types:
 - statistical:
 - uncertainties based on the number of observations
 - uncertainty usually goes like the sqrt(N), these describe 1σ uncertainties
 - systematic:
 - uncertainties inherent in the methods, equipment, stability, external conditions ...
 - these are typically more challenging to identify and to quantify
 - focus on the most important sources
 - measurements are often limited by one or the other
 - if your measurement is statistics limited, try to take more data, if you can significantly improve uncertainties (doubling data, improves uncertainties by 40%)
 - if your measurement is systematics limited, taking more data won't help

importance of uncertainties

Search for the Standard Model Higgs Boson in the Diphoton Decay Channel with 4.9 fb⁻¹ of pp Collision Data at $\sqrt{s} = 7$ TeV with ATLAS

G. Aad *et al.** (ATLAS Collaboration) (Received 7 February 2012; published 13 March 2012)

A search for the standard model Higgs boson is performed in the diphoton decay channel. The data used correspond to an integrated luminosity of 4.9 fb⁻¹ collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 7$ TeV. In the diphoton mass range 110–150 GeV, the largest excess with respect to the background-only hypothesis is observed at 126.5 GeV, with a local significance of 2.8 standard deviations. Taking the look-elsewhere effect into account in the range 110–150 GeV, this significance becomes 1.5 standard deviations. The standard model Higgs boson is excluded at 95% confidence level in the mass ranges of 113–115 GeV and 134.5–136 GeV.

Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC

The ATLAS Collaboration

Physics Letters B716 (2012) 1

Abstract

A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb⁻¹ collected at $\sqrt{s} = 7 \text{ TeV}$ in 2011 and 5.8 fb⁻¹ at $\sqrt{s} = 8 \text{ TeV}$ in 2012. Individual searches in the channels $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^{(*)} \rightarrow ev\mu\nu$ in the 8 TeV data are combined with previously published results of searches for $H \rightarrow ZZ^{(*)}$, $WW^{(*)}$, $b\bar{b}$ and $\tau^+\tau^-$ in the 7 TeV data and results from improved analyses of the $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of 126.0 \pm 0.4 (stat) \pm 0.4 (sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10^{-9} , is compatible with the production and decay of the Standard Model Higgs boson.

counting experiments

 $P_n(rt) = \frac{(rt)^n}{n!}e^{-rt}, n = 0, 1, 2, ...$ rt = (decay rate)(time) = number of counts

- random processes follow Poisson distribution
- nuclear decay is one such process, but this applies counting experiments
- asymmetric distribution at small number of counts
 - you can't observe negative counts
 - becomes Gaussian as rt increases
- distribution is a probability distribution, not the number of $c_n = f_n c_n unts$
- $\sigma/\mu = 1/\sqrt{rt} \rightarrow larger rt$, smaller uncertainty on μ

$$\sum_{n=0}^{\infty} P_n(rt) = 1 , \text{ probabilities sum to 1}$$

$$P_n(rt) = 1 , \text{ probabilities sum to 1}$$

$$P_n(rt) = rt , \text{ the mean}$$

$$\sigma = \sqrt{\sum_{n=0}^{\infty} (n - \langle n \rangle)^2 P_n(rt)} = \sqrt{rt} ,$$
standard deviation

accuracy and precision

- precision:
 - measurements close together
- accuracy:
 - measurements that contain the true value inside the uncertainty
- want to be both accurate and precise!
- in this class you will try to be accurate, but other measurements will typically be more precise than we can do with this equipment

error propagation

$$\Delta z = \sqrt{\left(\Delta x\right)^2 + \left(\Delta y\right)^2 + \dots}$$

$$\frac{\Delta z}{z} = \sqrt{\left(\frac{\Delta x}{x}\right)^2 + \left(\frac{\Delta y}{y}\right)^2 + \dots}$$

addition/subtraction

multiplication/division

- these formula are true if x and y are *independent* of each other
 - if you have correlated measurements then you must deal with the covariance
- many automated programs will do this for you, but *you* must figure out if you have correlated measurements
- think about a measurement with a lot of background:
 - if $\Delta x \& \Delta y$ are large then Δz will be large when z = x y
 - clear why minimizing background is very important for many measurements!

fitting data

$$\chi^{2} = \sum_{i=1}^{n} \frac{(x_{i} - \mu_{i})^{2}}{\sigma_{i}^{2}}$$

- fitting:
 - you provide the functional form—the fit should be meaningful
 - many implementations of chi2 minimization fitting around
 - need to understand how well the fit describes your data
 - this will only take into account statistical uncertainties, not systematics

fitting data

 $Ae^{-x/\tau} \tau = -3$

 $\tau = -2.24 \pm 0.27$ $\chi 2/dof = 5.5/9$ fit probability = 0.79 $\tau = -2.87 \pm 0.10$ $\chi 2/dof = 25.3/13$ fit probability = 0.02

 $\tau = -2.994 \pm 0.010$ $\chi 2/dof = 15.1/13$ fit probability = 0.30

thinking about systematics

- stability:
 - if you repeat a measurement, will you get the same answer?
 - how uncertain is your calibration?
 - if you repeated it, would you get the same calibration
 - what happens if you take the same measurement on different days? do you get the same answer?

data rejection

- omitting data because it doesn't conform to your expectations isn't scientific
- if something looks off, try to understand why
 - what other things can you check?
 - are you getting results consistent with yesterday? is the data overall consistent?
 - can you go back to some control measurement where you know the answer?
- write everything down!
- if you need to omit data document why
- be aware of confirmation biases!

- uncertainties are inherent in all measurements
- it is typical in experimental physics that the majority of the time is spent on uncertainty analysis
- always question and think about your data
 - think of the questions you would ask if it was someone else's result
- use appropriate significant figures!
 - don't tell me you have measured $x = 3.948532 \pm 0.3$
 - $L = (1.979 \pm 0.012) \text{m or } L = (1.98 \pm 0.8) \text{m}$
 - the difference being if the first sign. digit of the uncertainty is small or large

- many books written about uncertainty analysis
 - Bevington and Taylor are some of the most popular
- systematic uncertainties depend on the kind of measurement you are doing
- include in your report a discussion of how you evaluated your systematic uncertainties
- think critically about your data, but do not let your biases dictate which data you use
- write everything down so you know can know if there is something going on in your measurement