Etrst stable beame payystop eo i vivin

Anne M. Sickles
March 12, 2019

$80^{\circ} \mathrm{F}$

$2000^{\circ} \mathrm{F}$
how hot?

$80^{\circ} \mathrm{F}$

$2000^{\circ} \mathrm{F}$

$28 M^{\circ} \mathrm{F}$
how hot?

$80^{\circ} \mathrm{F}$

$2000^{\circ} \mathrm{F}$

$28 M^{\circ} \mathrm{F}$

$150 B^{\circ} \mathrm{F}$

$80^{\circ} \mathrm{F}$

$2000^{\circ} \mathrm{F}$

$28 M^{\circ} \mathrm{F}$

$150 B^{\circ} \mathrm{F}$
quark-gluon plasma
no photo available

the nucleus

$\mathbf{1 0 - 1 0} \mathrm{m}=1 \AA=100,000 \mathrm{fm}$

the nucleus

- $>99 \%$ of the mass of atoms, and thus normal matter, is in the nucleus
- vary in size from hydrogen \rightarrow uranium and larger
- composed of protons and neutrons
- the nucleus is held together by the strong force
- one of the 4 fundamental forces
- very strong \& short range interactions

and what's inside protons and neutrons?

quarks and gluons

fundamental particles which interact via the strong force

and what's inside protons and neutrons?

quarks and gluons

fundamental particles which interact via the strong force

and what's inside protons and neutrons?

quarks and gluons

fundamental particles which interact via the strong force

9

and what's inside protons and neutrons?

quarks and gluons

fundamental particles which interact via the strong force

confinement

quarks and gluons

fundamental particles which interact via the strong force

confinement

confinement makes the strong force hard to study because the details are locked inside the protons and neutrons

strong force at high temperature

a system that's hot and dense enough for the quarks and gluons to not be confined anymore

strong force at high temperature

a system that's hot and dense enough for the quarks and gluons to not be confined anymore
lead nucleus (many protons \& neutrons)

strong force at high temperature

a system that's hot and dense enough for the quarks and gluons to not be confined anymore
lead nucleus (many protons \& neutrons)

+ energy

strong force at high temperature

to create a system that's hot and dense enough for the quarks and gluons to not be confined anymore: the quark-gluon plasma
this is how the universe looked a millionth of a second after the Big Bang

Relativistic Heavy Ion Collider, New York

Large Hadron Collider, CERN

0.200 TeV collision energy

5.02 TeV collision energy
the world has two colliders capable of doing this
(check out CERN's youtube channel for videos about how colliders work)

relativistic heavy ion collisions

quark-gluon plasma

(QGP)
lasts for a billionth of a trillionth of a second $\left(10^{-23} \mathrm{sec}\right)$ and billion times smaller than a pixel on an iPhone display ($10^{-14} \mathrm{~m}$)

ATLAS detector at CERN

some ATLAS statistics

44m

- 100M electronics channels, 3000 km of cables, 7000 tons, millions of lines of code, 3000 scientists from 38 countries
- collisions every 100 nanoseconds (PbPb collisions)
- most of the time ATLAS collides protons looking to make new particles, this is a different use of ATLAS

what do we see?

hundreds or thousands of new particles are created in each collision

$$
E=m c^{2}
$$

these particles provide the only window into the earlier stages of the collision we look at each collision individually, but measure billions of collisions!

up to 10000 particles created in the most head on collisions

Miller, et al, Ann Rev Nuc Part 57 (2007) 205

what do nuclear collisions look like?

what do nuclear collisions look like?

view: one nuclei going into the screen and one coming out

counting particles

counting particles

counting particles

collision geometry

$\phi \quad[\mathrm{rad}]$
collision geometry

collision geometry

more particles come out the long side than the short side!

what's going on inside the collision?

steep pressure change

gradual pressure change

this is how a liquid works!
low viscosity

characterizing a liquid

high viscosity

liquid QGP

QGP flows well!

liquid QGP

QGP flows well!

low viscosity (small η / s)

$\eta / s>25(1 / 4 \pi)$

liquid QGP

QGP flows well!

low viscosity (small η / s)

$\eta / s(Q G P)<5(1 / 4 \pi)$
$\eta / s>25(1 / 4 \pi)$

liquid QGP

QGP flows well!

low viscosity (small η / s)
$\eta / s($ QGP $)<5(1 / 4 \pi)$
string theory calculation: universal minimum $\eta / s>1 / 4 \pi$
$\eta / s>25(1 / 4 \pi)$

liquid QGP

QGP flows well!

low viscosity (small η / s)
$\eta / s($ QGP $)<5(1 / 4 \pi)$
string theory calculation: universal minimum $\eta / s>1 / 4 \pi$
determining $\boldsymbol{\eta} / \mathbf{s}($ QGP) is very important
why does the strong force at high temperature lead to fluid behavior?
why does the strong force at high temperature lead to fluid behavior?
to answer that, we need a picture of the microscopic interactions between the quarks and gluons inside the QGP

QGP

QGP

QGP

QGP
?

sometimes a quark from one proton hits a quark from the other head on

a proton is like a beam of incoming quarks

a pair of jets

catias GEXPERIMENT

Run Number: 201006, Event Number: 55422459 Date: 2012-04-09 14:07:47 UTC

a proton is like a beam of incoming quarks

a proton is like a beam of incoming quarks

a jet created at the same time as the quark gluon plasma functions as a microscope

jets going through the QGP

lead-lead collisions: not every jet survives

jets going through the QGP

how is a jet made?

no QGP

time

QGP

interactions with the quark-gluon plasma cause more particles some of these particles are far from the jet

looking at the effects of the quark-gluon plasma

looking at the effects of the quark-gluon plasma

\# of particle in jet

\# of particle in jet

jets look different in the quark-gluon plasma
jets look different in the quark-gluon plasma
we work with theorists to build models which tell us how exactly

where next?

jets look different in the quark-gluon plasma
we work with theorists to build models which tell us how exactly

as an experimentalist, I try to figure out everything I can about how this depends on the size of the quark-gluon plasma, the energy of the jet, the type of quark, the temperature of the quark-gluon plasma,...

where next?

jets look different in the quark-gluon plasma
we work with theorists to build models which tell us how exactly

as an experimentalist, I try to figure out everything I can about how this depends on the size of the quark-gluon plasma, the energy of the jet, the type of quark, the temperature of the quark-gluon plasma,...

particle accelerators at BNL and CERN

RHIC (New York)

LHC (Switzerland)

0.200 TeV collision energy

5.02 TeV collision energy
energy of the collision sets the quark-gluon plasma temperature

sPHENIX

sPHENIX currently under construction as a new detector for RHIC optimized for jet measurements! first data: 2023

made in Illinois: sPHENIX electromagnetic calorimeter

plan on making 6000 tungsten powder scintillating fiber blocks as an essential component of the jet measurement in sPHENIX

Wernuing tast qu:nis anc gluons avaminosco a \$To stod the inner wortimes of thion eghe mather Pice BR Qund Brookharen thêsis a new wind ow oli one ot the four Indoancmit 10 ces of ciatire and a look hack at the vey en Iy unverse \qquad +

- man date the hic in November

2 wouning towar a new detcco at sphen!

Ruent: 419161 S
$2015-11-25$ 11.12\% 50 CDITY

finst stable beans
neay bion cos Sub

4 fundamental forces of nature

gravity	solar system, airplanes, you sitting in the seats, sports, black holes, ...
 magnetism	chemistry, biology, cell phones, solar power, superconductors, semiconductors
strong force	stars, atoms, neutron stars, nuclear power, nuclear bombs, PET scans...
weak force	

these things can all be understood in terms of the forces that cause them, but it is not easy to predict all the important consequences from the force

