

The Quark Gluon Plasma: A Look Inside the Hottest Matterin the Universe

Run: 286665 Event: 419161 2015-11-25 11:12:50 CEST

first stable beams heavy-ion collisions

Anne M. Sickles March 12, 2019

80 ° F

80 ° F

2000 ° F

80 ° F

2000 ° F

28M ° F

80 ° F

28M ° F

28M ° F

150B ° F

quark-gluon plasma

no photo available

5T ° F

what is inside an atom?

the nucleus

- >99% of the mass of atoms, and thus normal matter, is in the nucleus
- vary in size from hydrogen → uranium and larger
- composed of protons and neutrons
- the nucleus is held together by the strong force
 - one of the 4 fundamental forces
 - very strong & short range interactions

quarks and gluons fundamental particles which interact via the strong force q g O C

confinement makes the strong force hard to study because the details are locked inside the protons and neutrons

a system that's hot and dense enough for the quarks and gluons to not be confined anymore

a system that's hot and dense enough for the quarks and gluons to not be confined anymore

lead nucleus (many protons & neutrons)

a system that's hot and dense enough for the quarks and gluons to not be confined anymore

lead nucleus (many protons & neutrons)

+ energy

to create a system that's hot and dense enough for the quarks and gluons to not be confined anymore: the **quark-gluon plasma**

this is how the universe looked a millionth of a second after the Big Bang

Relativistic Heavy Ion Collider, New York

Large Hadron Collider, CERN

0.200 TeV collision energy

5.02 TeV collision energy

the world has two colliders capable of doing this (check out CERN's youtube channel for videos about how colliders work)

relativistic **heavy** ion collisions quark-gluon plasma (QGP)

lasts for a billionth of a trillionth of a second (10⁻²³ sec) and billion times smaller than a pixel on an iPhone display (10⁻¹⁴m)

ATLAS detector at CERN

some ATLAS statistics

44m

- 100M electronics channels, 3000km of cables, 7000 tons, millions of lines of code, 3000 scientists from 38 countries
- collisions every 100 nanoseconds (PbPb collisions)

Toroid magnets

 most of the time ATLAS collides protons looking to make new particles, this is a different use of ATLAS

Tile calorimeters

LAr hadronic end-cap and forward calorimeters

LAr electromagnetic calorimeters

Pixel detector

Muon chambers

25m

Solenoid magnet | Transition radiation tracker

Semiconductor tracker

output so far: ~ 800 science papers

what do we see?

hundreds or thousands of **new** particles are created in each collision

 $E = mc^2$

these particles provide the only window into the earlier stages of the collision we look at each collision individually, but measure billions of collisions!

Run: 286665 Event: 419161 2015-11-25 11:12:50 CEST

first stable beams heavy-ion collisions

up to 10000 particles created in the most head on collisions

what do nuclear collisions look like?

what do nuclear collisions look like?

what do nuclear collisions look like?

view: one nuclei going into the screen and one coming out

counting particles

counting particles

counting particles

collision geometry

collision geometry

 ϕ [rad]

collision geometry

more particles come out the long side than the short side!

what's going on inside the collision?

what's going on inside the collision?

lots of interactions

steep pressure change

this is how a liquid works!

characterizing a liquid

characterizing a liquid

low viscosity

characterizing a liquid

low viscosity

high viscosity

QGP flows well!

QGP flows well!

low viscosity (small η/s)

η/s > 25 (1/4π)

QGP flows well!

 ϕ - ψ_2 [rad]

low viscosity (small η/s)

 $\eta/s(QGP) < 5 (1/4\pi)$

η/s > 25 (1/4π)

QGP flows well!

 $\phi - \psi_2$ [rad]

low viscosity (small η/s)

 $\eta/s(QGP) < 5 (1/4\pi)$

string theory calculation: universal minimum $\eta/s > 1/4\pi$

 $\eta/s > 25 (1/4\pi)$

QGP flows well!

 ϕ - ψ_2 [rad]

low viscosity (small η/s)

 $\eta/s > 25 (1/4\pi)$

 $\eta/s(QGP) < 5 (1/4\pi)$

string theory calculation: universal minimum $\eta/s > 1/4\pi$

determining η/s(QGP) is very important why does the strong force at high temperature lead to fluid behavior?

why does the strong force at high temperature lead to fluid behavior?

to answer that, we need a picture of the microscopic interactions between the quarks and gluons inside the QGP

sometimes a quark from one proton hits a quark from the other head on

a pair of jets

a jet created at the same time as the quark gluon plasma functions as a microscope

jets going through the QGP

lead-lead collisions: not every jet survives

energy balance of the jets

energy of jet 2 / energy of jet 1

energy balance of the jets

energy of jet 2 / energy of jet 1 a lot of energy is removed from jet 2

jets going through the QGP

how is a jet made?

no QGP

interactions with the **quark-gluon plasma** cause more particles some of these particles are far from the jet

looking at the effects of the quark-gluon plasma

looking at the effects of the quark-gluon plasma

of particle in jet

of particle in jet

where next?

jets look different in the quark-gluon plasma
jets look different in the quark-gluon plasma

we work with theorists to build models which tell us how exactly

jets look different in the quark-gluon plasma

we work with theorists to build models which tell us how exactly

as an experimentalist, I try to figure out everything I can about how this depends on the size of the quark-gluon plasma, the energy of the jet, the type of quark, the temperature of the quark-gluon plasma,...

jets look different in the quark-gluon plasma

we work with theorists to build models which tell us how exactly

as an experimentalist, I try to figure out everything I can about how this depends on the size of the quark-gluon plasma, the energy of the jet, the type of quark, the temperature of the quark-gluon plasma,...

particle accelerators at BNL and CERN

RHIC (New York)

0.200 TeV collision energy

5.02 TeV collision energy

energy of the collision sets the quark-gluon plasma temperature

sPHENIX

sPHENIX currently under construction as a new detector for RHIC optimized for jet measurements! first data: 2023

made in Illinois: sPHENIX electromagnetic calorimeter

students in the lab

plan on making 6000 tungsten powder scintillating fiber blocks as an essential component of the jet measurement in sPHENIX

EXPERMENT

- we're using fast quarks and gluons as a microscope to study the inner workings of trillion degree matter at CERN and Brookhaven
- this is a new window on one of the four
 fundamental forces of nature and a look back at
 the very early universe
- new data at the LHC in November!
- working toward a new detector at sPHENIX
- Event: 419161 2015-11-25 11:12:50 CEST

first stable beams heavy-ion collisions

4 fundamental forces of nature

gravity	solar system, airplanes, you sitting in the seats, sports, black holes,
electricity &	chemistry, biology, cell phones, solar power,
magnetism	superconductors, semiconductors
strong force	stars, atoms, neutron stars, nuclear power, nuclear bombs, PET scans
weak force	

these things can all be understood in terms of the forces that cause them, but it is not easy to predict all the important consequences from the force