
Physics 401. Spring 2017
Eugene V. Colla
Transients in a Torsional Oscillator

- Electrical RLC circuits
- Torsional Oscillator
 - Damping
 - Data Analysis
Transients in RLC circuit.

\[V_R + V_L + V_C = V(t) \]

If \(V(t) = 0 \)

Damping term. Reflects energy dissipation in the resistor.

\[L \frac{d^2 q(t)}{dt^2} + R \frac{d q(t)}{dt} + \frac{q(t)}{C} = 0, \quad \frac{q(t)}{C} = V_0 \]
RLC: three solutions.

\[a = \frac{R}{2L}, \quad b = \sqrt{\left(\frac{R}{2L}\right)^2 - \left(\frac{1}{LC}\right)} \]

b^2 < 0 under-damped solution

\[f = \frac{1}{2\pi} \sqrt{\left(\frac{1}{LC}\right) - \left(\frac{R}{2L}\right)^2} \]

b^2 > 0 over-damped solution

b^2 = 0 critically-damped solution
The Torsional Oscillator.

- Tension nut
- Tension bolt
- Disk comb
- Disk
- Piano wire
- Motor comb
- Motor
- Optical sensors
- Optical comb for read out

Momentum of Inertia I for disk with radius R and mass M:

$$I = \frac{MR^2}{2}$$
The Torsional Oscillator.

Wires 1 and 2 exert the torques τ_1 and τ_2 on the disk of mass M.

$\tau = \tau_1 + \tau_2 = -K_1 \theta - K_2 \theta = -K \theta$

$K_1 = \frac{\pi Gr^4}{2L_1}$

$K = K_1 + K_2 = G \frac{\pi}{2} r^4 \left(\frac{1}{L_1} + \frac{1}{L_2} \right)$

θ: angular deflection of the disk
r: radius of the wires
L_i: length of the wire i
G: shear modulus of the wire

A typical shear modulus for steel is 8.3×10^{10} N/m2.

K – torsional spring constant
The Data Acquisition Setup and Program

Program can accept only 10000 points. If sampling rate is 50Hz – the maximum time of data collection is 200s!
Measuring of the Torsional Spring constant.

\[\tau_1 + \tau_2 = 0 \quad \Rightarrow \quad K\theta = mgR \]

\[\theta = \frac{gR}{K} m \quad K = \frac{gR}{\text{slope}} \]

\[g = 9.81 \text{m/s}^2 \]

Slope = 51.3 rad/kg
K = 0.00971 Nm/rad
Measuring of the Torsional Spring constant. Possible problems.

Rope is too short!

\[\tau = R \times F \]

Avoid the over damping of the pendulum motion and any extra sources of friction.
Measuring of the electrostatic forces.

Charles-Augustin de Coulomb
1736-1806

\[\vec{\tau}_1 + \vec{\tau}_2 = 0 \]

\[K\theta = FL; \]

Where \(F \) is electrostatic force and \(L \) is the length of the balance beam.

Coulomb's law

\[F = k_e \frac{q_1q_2}{r^2}; \quad k_e = \frac{1}{4\pi\varepsilon_0} \]

Coulomb's torsion balance.

Courtesy of Wikipedia
Measuring of the gravitational forces.

\[\vec{\tau}_1 + \vec{\tau}_2 = 0 \]

\[K\theta = FL; \]

Where \(F \) is gravitational force and \(L \) is the length of the balance beam.

Cavendish’s result

\[G = 6.74 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}, \]

Currently accepted value

\[6.67428 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}. \]
The Torsional Oscillator. “No damping”.

\[
\tau = \tau_1 + \tau_2 = -K_1 \theta - K_2 \theta = -K \theta
\]

\[
K_1 = \frac{\pi Gr^4}{2L_1}; \quad K = K_1 + K_2 = \frac{\pi Gr^4}{2} \left(\frac{1}{L_1} + \frac{1}{L_2} \right)
\]

If there is no dissipation:

\[
I \frac{d^2 \theta}{dt^2} = -K \theta
\]

Solution: \(\theta = \theta_0 \sin(\omega_0 t + \phi) \) with \(\omega_0 = \sqrt{\frac{K}{I}} \)

If we know \(I \) we can calculate \(K \)

From time trace \(\theta(t) \) we can find \(\omega_0 \) it can be done by measuring period but better (and faster!) to perform the nonlinear fitting.
The Torsional Oscillator. “No damping”. Fitting

“No damping” is not realistic situation fitting should be done to SineDamp function $y = y_0 + A\exp\left(-\frac{x}{t_0}\right)\sin(\pi\frac{(x-x_c)}{w})$

$$\omega_0 = \frac{\pi}{w}$$

$\omega_0 = 3.126 \text{ rad} / s$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_0</td>
<td>-0.0024</td>
<td>0.0013</td>
</tr>
<tr>
<td>x_c</td>
<td>-0.7236</td>
<td>9.3E-4</td>
</tr>
<tr>
<td>w</td>
<td>1.00517</td>
<td>2.5E-5</td>
</tr>
<tr>
<td>t_0</td>
<td>178.02</td>
<td>2.44</td>
</tr>
<tr>
<td>A</td>
<td>1.409</td>
<td>0.004</td>
</tr>
</tbody>
</table>

$K = \omega_0^2 I \approx 1.12 \times 10^{-2} \frac{Nm}{\text{rad}}$
The Torsional Oscillator. “No damping”. Fitting.

\[\omega_0 = \frac{\pi}{w} \quad f_0 = \frac{1}{2w} \]

From “SineDamp fitting \(f_0 = 0.497\, \text{Hz} \)

or \(\omega_0 = 2\pi f_0 = 3.123 \, \text{rad} / \text{s} \)

Resonance frequency can be also found by applying FFT on the raw data
Viscous (magnetic) damping.

\[I \frac{d^2 \theta}{dt^2} + K \theta + R \frac{d\theta}{dt} = 0 \]

Damping term

The solutions are exactly the same as in case of RLC circuit (three solutions)

Under damped case
Viscous damping. Logarithmic decrement.

\[I \frac{d^2 \theta}{dt^2} + K \theta + R \frac{d\theta}{dt} = 0 \]

\[\delta = \ln \left(\frac{\theta_{n+1}}{\theta_n} \right); \]

For viscous damping \(\delta = \frac{T}{t_0}; \)

where

\(T \) – period and \(t_0 \) – characteristic decay time

from SineDamp fitting function

\(T = 2w \) and \(\delta = \frac{2w}{t_0} \)

\[\delta = 0.640 \pm 0.002 \]

From SineDamp fitting exponential decay term is

\[\exp \left(\frac{-t}{t_0} \right) \]

\[*a = \frac{1}{t_0} \] (write up)
Viscous damping. Logarithmic decrement.

We can find the amplitudes of the wave using Peak Analyzer. Peaks coordinates are saved in the worksheet and can be used for analysis.

\begin{align*}
\theta_n (\text{rad})
\end{align*}

\begin{align*}
\ln \left(\frac{A_{n+1}}{A_n} \right) \\
\delta = 0.63 \pm 0.02
\end{align*}
1. Fitting to damp exponential decay function. Outcome: resonance frequency and decrement coefficient.

3. Using Origin Peak Analyzer we can find amplitudes and positions of the damped sine wave maximum end then plot the envelope.

4. You can directly obtain the envelope of the damped sine wave by using Origin (optional).
\[\ddot{\theta} + K\dot{\theta} + \tau_{\text{Coulomb}} = 0 \]

\[\tau_{\text{Coulomb}} = C\left| \frac{\dot{\theta}}{\dot{\theta}} \right| \]

\[\theta(t) = +\frac{C}{K} + (\theta_0 - (4n - 1)\frac{C}{K}) \cos(\omega t) \]

\[(n - \frac{1}{2})T \leq t \leq nT \quad n = 1, 2, \ldots \]

\[\theta(t) = +\frac{C}{K} + (\theta_0 - (4n - 3)\frac{C}{K}) \cos(\omega t) \]

\[(n - 1)T \leq t \leq (n - \frac{1}{2})T \quad n = 1, 2, \ldots \]

Amplitude decreases by \(4C/K\) per period linearly!
Coulomb damping. Experiment

Amplitude decreases by 4C/K per period linearly!

Equation $y = a + b \cdot x$

<table>
<thead>
<tr>
<th>Weight</th>
<th>No Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Sum of Squares</td>
<td>0.04063</td>
</tr>
<tr>
<td>Pearson's r</td>
<td>-0.9986</td>
</tr>
<tr>
<td>Adj. R-Square</td>
<td>0.99699</td>
</tr>
<tr>
<td>Value</td>
<td>Standard Error</td>
</tr>
<tr>
<td>y</td>
<td>Intercept 3.32967 0.03072</td>
</tr>
<tr>
<td>y</td>
<td>Slope -0.11277 0.00166</td>
</tr>
</tbody>
</table>
Coulomb damping. Experiment

\[|\tau_{\text{Coulomb}}| = C \]

\[K\theta \sim \theta \]

if \(K\theta \leq C \)

pendulum stops
Turbulent damping. Theory

\[I\ddot{\theta} + K\theta + \tau_{\text{Turb}} = 0 \]

\[\tau_{\text{turb}} = C_t \, \text{sgn}(\dot{\theta}) |\dot{\theta}|^n \]

In case of \(n=1 \) → viscous damping

Logarithmic decrement in case of turbulent damping is no more constant and in case \(n=2 \) can be calculated as \(\delta = \frac{8C}{3I} \theta_0 \)

Expected result – decrement decreases with decreasing of the amplitude
Analyzing the envelope of the damped oscillating time record we can calculate the log decrement factor.
Turbulent damping. Experiment.
Raw data.

Our goal: find the positions and amplitudes of the peaks

X_i, Y_i

1^{st} Technique: using “FindPeaks” option
Data analysis. Finding the peaks.

Local Maximum works well for not noisy oscillating dependencies.
Data analysis. Finding the peaks.

The details related to this project you can find in:
\`\`\`\textbackslash{engr-file-03}\textbackslash{PHYINST}\textbackslash{APL Courses}\textbackslash{PHYCS401}\textbackslash{Students}\textbackslash{6. Torsional oscillator}\textbackslash{Turbulent damping.opj}\`\`\`

New plot + labels as a result of finding the peaks

“Peaks” data can be found in a Worksheet and using this data you can plot the dependence of amplitude on time.

![Graph showing peaks and data table]

- **“Positive” peaks**
- **“Negative” peaks**
Data analysis. Finding the peaks.

Original Data → Envelope

\[\theta (\text{rad}) \]
\[\text{time (s)} \]

\[\theta_n (\text{rad}) \]
\[\text{time (s)} \]
Data analysis. Finding the peaks.

2nd Technique: using “Envelope” option

Origin will create the worksheet with interpolated (defined for the same x’s as the raw data) “envelope” data
Data analysis. Finding the peaks.

![Graph showing original data and envelope data](image)

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Pend_theta (radians)</th>
<th>Motr_theta (radians)</th>
<th>X1(X2)</th>
<th>Envelope X1</th>
<th>Envelope Y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-0.0813</td>
<td>0</td>
<td>0</td>
<td>-0.39883</td>
</tr>
<tr>
<td>2</td>
<td>0.02</td>
<td>-0.07286</td>
<td>0</td>
<td>0.02</td>
<td>-0.38144</td>
</tr>
<tr>
<td>3</td>
<td>0.04</td>
<td>-0.06443</td>
<td>0</td>
<td>0.04</td>
<td>-0.36403</td>
</tr>
<tr>
<td>4</td>
<td>0.06</td>
<td>-0.05522</td>
<td>0</td>
<td>0.06</td>
<td>-0.34662</td>
</tr>
<tr>
<td>5</td>
<td>0.08</td>
<td>-0.04679</td>
<td>0</td>
<td>0.08</td>
<td>-0.32921</td>
</tr>
</tbody>
</table>

Original data

Envelope data
All these quasi periodic data can be analyzed using Fast Fourier Transform.

Our goal: find the resonance frequency of the pendulum.

Data analysis. FFT.
Data analysis. FFT.

The results of FFT you can find in the same Workbook which contains the raw data.

Click on corresponding graph and it will appear in separate window.

Magnitude vs. frequency plot.
Data analysis. FFT.

Spectrum better to present in log-log scale.

Resonance frequency: 0.49125

Linear scale

Log-log scale
Appendix. Some comments on oil drop experiment error analysis.

Result of measurement

\[X_{\text{meas}} = X_{\text{true}} + e_s + e_r \]

Systematic error

Correct value

Random error
Appendix. Some comments on oil drop experiment error analysis.

Systematic error

\[X_{\text{meas}} = X_{\text{true}} + e_s + e_r \]

\[Q = F \cdot S \cdot T = \left(\frac{1}{f_c^{3/2}} \right) \frac{9\pi d}{V} \sqrt{\frac{2\eta^3 x^3}{g \rho}} + \frac{1}{\sqrt{t_g}} \left(\frac{1}{t_g} + \frac{1}{t_{\text{rise}}} \right) \]

\[F = \frac{1}{f_c^{3/2}} \approx 1 - \left(\frac{t_g}{\tau_g} \right)^{1/2} \]

\[S = \frac{9\pi d}{V} \sqrt{\frac{2\eta^3 x^3}{g \rho}} \]

\[T = \frac{1}{\sqrt{t_g}} \left(\frac{1}{t_g} + \frac{1}{t_{\text{rise}}} \right) \]

\[\Delta Q = \sqrt{\left(\frac{dQ}{dF} \right)^2 (\Delta F)^2 + \left(\frac{dQ}{dS} \right)^2 (\Delta S)^2 + \left(\frac{dQ}{dT} \right)^2 (\Delta T)^2} \approx \sqrt{\left(\frac{dQ}{dS} \right)^2 (\Delta S)^2 + \left(\frac{dQ}{dT} \right)^2 (\Delta T)^2} \]

\[= \sqrt{(FT)^2 (\Delta S)^2 + (FS)^2 (\Delta T)^2} = Q \sqrt{\left(\frac{\Delta S}{S} \right)^2 + \left(\frac{\Delta T}{T} \right)^2} \]
Systematic error

\[X_{\text{meas}} = X_{\text{true}} + e_s + e_r \]

\[\Delta Q \approx Q \sqrt{\left(\frac{\Delta S}{S} \right)^2 + \left(\frac{\Delta T}{T} \right)^2} \]

\[\frac{\Delta S}{S} = \sqrt{\left(\frac{\Delta d}{d} \right)^2 + \left(\frac{\Delta V}{V} \right)^2 + \left(\frac{3}{2} \frac{\Delta x}{x} \right)^2 + \left(\frac{3}{2} \frac{\Delta \eta}{\eta} \right)^2 + \left(\frac{1}{2} \frac{\Delta \rho}{\rho} \right)^2 + \left(\frac{1}{2} \frac{\Delta g}{g} \right)^2} \approx \sqrt{\left(\frac{\Delta d}{d} \right)^2 + \left(\frac{3}{2} \frac{\Delta x}{x} \right)^2} \]

\[\Delta T = \sqrt{\left(3/2 \frac{1}{t_g^{5/2}} + \frac{1}{2} \frac{1}{t_g^{3/2}} \frac{1}{t_{\text{rise}}} \right)^2 \Delta t_g^2 + \left(\frac{1}{t_g^{1/2}} \frac{1}{t_{\text{rise}}} \right)^2 \Delta t_{\text{rise}}^2} \]
Appendix. Some comments on oil drop experiment error analysis.

Result of measurement: $X_{\text{meas}} = X_{\text{true}} + e_s + e_r$

Correct value

Systematic error

Random error

Mean of $\{x_i\}$

$$\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i$$

Standard deviation of $\{x_i\}$

$$\sigma^2 = \frac{1}{N-1} \sum_{i=0}^{N-1} (x_i - \mu)^2$$

Standard deviation of mean

$$\sigma_X = \frac{\sigma}{\sqrt{N}}$$